
IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 1

The Capacity Region of 2-Receiver Multiple-Input
Broadcast Packet Erasure Channels with Channel

Output Feedback
Chih-Chun Wang, Member, IEEE, Jaemin Han, Student Member, IEEE

Abstract—This work studies the capacity of the 2-receiver
multiple-input broadcast packet erasure channels (PECs) with
channel output feedback, which is in contrast with the single-
input setting of the existing works. Motivated by the immense
success of linear network coding (LNC) in theory and in practice,
this work first focuses on LNC schemes and characterizes
the LNC feedback capacity region of 2-receiver multiple-input
broadcast PECs. A new linear-space-based approach is proposed,
which unifies the problems of finding a capacity outer bound
and devising the achievability scheme into a single linear pro-
gramming (LP) problem. Specifically, an LP solver is used to
exhaustively search for the LNC scheme(s) with the best possible
throughput, the result of which is thus guaranteed to attain the LNC
feedback capacity. It is then proven by pure algebraic arguments
that the LNC capacity region matches a simple capacity region
outer bound, which proves that the derived LNC capacity region
is indeed the true capacity. A byproduct of the above results is
a complete LNC capacity region characterization for 2-receiver
partially Markovian and partially controllable broadcast PECs.

Index Terms—Broadcast capacity; broadcast channels; channel
output feedback; linear network coding; multiple-input/multiple-
output (MIMO) channels; packet erasure channels.

I. INTRODUCTION

It is well known that channel output feedback can poten-
tially enlarge the capacity region of broadcast channels [2],
[13]. Recently the feedback capacity region of K-receiver
broadcast packet erasure channels (PECs) has been fully
characterized for K ≤ 3 [6], [15]. For the case of K > 3, the
full feedback broadcast capacity region has been characterized
for the setting of perfectly symmetric channels and for the
setting of one-sidedly-fair capacity with spatially independent
erasure events, respectively [6], [15]. Numerically tight capac-
ity inner and outer bounds have also been proposed in [15],
which can be computed efficiently by linear programming (LP)
solvers for arbitrary K and arbitrary channel characteristics.
Specifically, a 1-to-K PEC takes an input symbol (also known
as a packet) W from some (large) finite field GF(q) and each
destination dk (out of K destinations) receives either the input

This work was supported in parts by NSF Grants CCF 0845968 and CNS
0905331.

Part of this paper was presented in the IEEE International Symposium on
Information Theory, 2012.

C.-C. Wang and J. Han are with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, 47906 USA; e-mail:
{chihw,han83}@purdue.edu

Manuscript received in May 2012; revised in May 2014.
Copyright (c) 2014 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

packet Zk = W or an erasure Zk = ∗, depending on whether
the packet W has successfully arrived at dk. The single-input
broadcast PEC model in [6], [15] captures closely the network
coding capacity for the downlink transmission from a single
access point to multiple clients with one antenna and simple
modulation schemes [9].

On the other hand, such a single-input broadcast PEC
model does not take into account several commonly used
modern communication schemes. For example, 2 antennas
may be used at both the source s and the destinations dk,
which corresponds to a multiple-input broadcast PEC [4] that
takes (W [1],W [2]) ∈ (GF(q))2 as input, and each dk may
receive one of the four possible outcomes (W [1], ∗), (∗,W [2]),
(W [1],W [2]), and (∗, ∗) depending on whether the packet
W [m] sent by antenna m, m = 1, 2, is decodable or not.
Even when only a single antenna is used, source s may use
Orthogonal Frequency Division Multiple Access (OFDMA),
which, in each time slot, can send out multiple streams
of packets over different sub-carriers. Each sub-carrier may
experience different random erasure events. Each dk constantly
scans all subcarriers and records any overheard packets. The
multiple sub-carriers in OFDMA can again be modeled as a
multiple-input broadcast PEC.

This works considers the multiple-input broadcast PEC with
2 receivers and channel output feedback. That is, in each time
slot t, the source s sends M symbols (W [1],W [2], · · · ,W [M]).
Depending on the channel realization, each destination di,
i = 1, 2, may hear a random set of W [·] symbols. At the end
of time t, each di reports back to s which subset of symbols it
has received in the current time slot through the use of ACK
or NACK. The setting of interest generalizes the existing work
[4] by further considering the throughput benefits of channel
output feedback. Motivated by the immense success of linear
network coding (LNC) [11], this work first focuses on LNC
schemes and characterizes the full LNC feedback capacity
region (R∗

1, R
∗
2). A new framework is proposed that unifies the

problems of finding an LNC capacity outer bound and design-
ing the corresponding bound-achieving solution into a single
linear-programming (LP) problem. Namely, we first drasti-
cally simplify the LNC design choices in a lossless way by
leveraging upon the underlying linear space structures. Then
we use an LP solver to search exhaustively over all possible
LNC design choices and find the LNC solution that achieves
the highest throughput. The exhaustiveness guarantees that the
resulting LNC scheme is throughput optimal (among all LNC
solutions) and thus achieves the LNC capacity.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 2

Remark 1: Such a constructive optimality proof has been
widely used in the networking community but not in the
information theory community. For example, in the networking
society, the optimal multi-path routing throughput is found
by simply searching over all possible routing decisions that
obey the flow-conservation law, which is in contrast with
the traditional information-theoretic approach that first finds
a cut and an achievability scheme and later proves that the
achievable throughput meet the cut value. This exhaustive-
search-based approach was previously not possible since there
are too many LNC design choices. With a new framework that
leverages upon the underlying linear space structure of LNC,
we can greatly reduce the number of design choices and are
thus able to design provably optimal LNC schemes without
the need of finding any cut condition!

Remark 2: This work considers the so-called inter-flow NC
problem with two coexisting traffic flows. When there is only
one flow in the network, termed the intra-flow NC problem, [3]
proves that channel output feedback does not increase the end-
to-end capacity of any arbitrary erasure networks, and random
linear network coding [8] achieves the capacity.

After characterizing the LNC capacity region of 2-receiver
multi-input broadcast PECs, we will prove by some pure
algebraic arguments that the LNC capacity region matches a
simple capacity region outer bound. The results thus prove that
the newly derived LNC capacity region is indeed the capacity.

The rest of this paper is organized as follows. Section II
introduces the problem formulation. Section III discusses sev-
eral existing results. The main results of this work are the full
LNC feedback capacity characterization and the equivalence
between the LNC capacity region and the true capacity, which
are presented in Section IV. Section V contains the proof
for the case of M = 1 input, which illustrates several key
concepts of this work. Section VI generalizes the proof for
the case of arbitrary M inputs. Section VII discusses in
details a concrete multi-input broadcast PEC example and
some further implications of the capacity results, including
the LNC feedback capacity of the partially Markovian and
partially controllable broadcast PECs. Section VIII concludes
this work.

II. PROBLEM FORMULATION

Given a finite field GF(q), the M -input 2-receiver broadcast
PEC is defined as follows. For any time slot, source s sends
M symbols W

∆
= (W [1],W [2], · · · ,W [M]) ∈ (GF(q))M and

each di receives a random subset rxi ⊆ {1, 2, · · · ,M} of the
W [·] symbols for i = 1, 2. Each of the M input symbols
W [m] takes values in GF(q). The randomness of an M -
input 2-receiver broadcast PEC can be described by the joint
reception probability prx1,rx2 such that

∑
∀rx1,rx2 prx1,rx2 = 1.

For example, when M = 3, p{1,2},{2,3} is the probability
that d1 receives Z1

∆
= (W [1],W [2], ∗) and d2 receives Z2

∆
=

(∗,W [2],W [3]). We consider only stationary and memoryless
channels, i.e., {prx1,rx2} remains constant (over time) and the
reception events for any distinct time slots t1, t2, · · · are in-
dependent. For any given joint probability distribution prx1,rx2 ,
two independence conditions can be defined as follows.

Definition 1: An M -input 2-receiver broadcast PEC is
cross-input independent if for any m ̸= m̃, the two
2-dimensional random vectors (1{m∈rx1}, 1{m∈rx2}) and
(1{m̃∈rx1}, 1{m̃∈rx2}) are independent where 1{·} is the indi-
cator function.

Definition 2: An M -input 2-receiver broadcast PEC is
cross-receiver independent1 if the two random sets rx1 and
rx2 are independently distributed.

Throughout this work we focus mostly only on M -input
2-receiver broadcast PECs that are cross-input independent
(but may or may not be cross-receiver independent). For
comparison, the (M, 2) erasure broadcast channel defined in
[4] is equivalent to the M -input 2-receiver model that is both
cross-input and cross-receiver independent.

We use p
[m]
a1a2 to denote the (marginal) reception probabil-

ities for the m-th symbol W [m] where each bit ai indicates
whether di receives W [m] or not for i = 1, 2. For example,
by definition

p
[m]
10 =

∑
∀rx1,rx2 s.t. m∈rx1,m/∈rx2

prx1,rx2

is the probability that the m-th input symbol W [m] is success-
fully received by d1 but not by d2.

Consider the following communication problem. For any
rate vector (R1, R2), within n time slots source s would
like to send two independent packet streams Xi

∆
=

(Xi,1, Xi,2, · · · , Xi,nRi) ∈ (GF(q))nRi to destination di for
i = 1, 2, respectively. At the end of each time slot, each di
reports back to s which subset of symbols it has received (the
rxi value) through the use of ACK or NACK. This channel
output feedback setting was not considered in the existing
work [4].

If we use the input argument “(t)”, t = 1, 2, · · · , n, to
distinguish the n channel usages, a network code can be
described by n encoding functions: for all t = 1, · · · , n,

W(t) = ft(X1,X2, [rx1, rx2]
t−1
1) (1)

and two decoding functions: for all i = 1, 2,

X̂i = gi
(
[Zi]

n
1 , {ft(·, ·, [rx1, rx2]t−1

1) : t = 1, · · · , n}
)
, (2)

where [Zi]
n
1 denotes what di has received from time 1 to

n, and [rx1, rx2]
t−1
1 denotes the channel output information

from time 1 to (t − 1). In (2) we assume that each di
knows2 how the coded symbols are generated (the functions
ft(·, ·, [rx1, rx2]t−1

1)) but does not know the actual information
symbols X1 and X2 used to generate W(t).

A network code is linear if the encoders ft are linear with
respect to X1 and X2, i.e., when (1) can be written as

W(t) = X ·Ct,

1Cross-receiver independence is also termed “spatial independence” in [15].
2In general, di always knows ft(·, ·, ·), the overall communication

scheme that is agreed upon before transmission. But di does not know
ft(·, ·, [rx1, rx2]t−1

1) since it depends on the (random) channel realization
of the other destination dj . As a result, a more realistic definition of the
decoder should be

X̂i = gi ([Zi]
n
1) . (3)

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 3

where Ct is an (nR1 + nR2) × M matrix in GF(q) and
X

∆
= (X1,X2) is an n(R1 + R2)-dimensional row vector

consisting of all information symbols. The choice of Ct

depends on [rx1, rx2]
t−1
1 but not on X. In practice [1], the

coding coefficients Ct are often embedded in the header
of the packets so that upon the successful reception of a
packet W [m](t), the corresponding coding coefficients used to
generate W [m](t) are known to the receiver. Hence a decoder
of the form of (2) can be used.

Definition 3: Given a finite field GF(q), a rate vector
(R1, R2) is achievable if for any ϵ > 0 there exists a network
code of length n such that Prob(X̂i ̸= Xi) < ϵ for all i = 1, 2.
The capacity region is defined as the closure of all (R1, R2)
that are achievable.

Definition 4: A rate vector (R1, R2) is LNC-achievable if it
can be achieved by a linear network code. The LNC capacity
region is the closure of all LNC-achievable (R1, R2).

Note that the unit of the above capacity definition is packets
per time slot. It can be converted to the traditional unit bits
per time slot by multiplying a factor of log2(q) since each
packet can carry log2(q) bits of information. Throughout this
paper, we use exclusively packets per time slot as the unit.

III. DISCUSSION OF THE EXISTING RESULTS

A. A Pair of Simple Inner and Outer Bounds

A simple inner bound on the above capacity problem can be
derived by performing LNC over the M individual single-input
broadcast PECs (one for each of the M inputs) separately.
Therefore, we have the following lemma:

Lemma 1: For any fixed GF(q), a rate vector (R1, R2) is
LNC-achievable if there exist 2M non-negative variables R[m]

1

and R
[m]
2 , for all m = 1, · · · ,M , such that the following

conditions are satisfied.

∀i = 1, 2,
M∑

m=1

R
[m]
i = Ri (4)

∀m = 1, · · · ,M,


R

[m]
1

p
[m]
10 +p

[m]
11

+
R

[m]
2

p
[m]
10 +p

[m]
01 +p

[m]
11

< 1

R
[m]
1

p
[m]
10 +p

[m]
01 +p

[m]
11

+
R

[m]
2

p
[m]
01 +p

[m]
11

< 1
. (5)

Proof: (4) follows from summing up the per-input LNC
rates and (5) follows from the feedback capacity region results
for 1-input 2-receiver broadcast PECs [7].

Following similar steps as in [7] we can derive the following
capacity outer bound.

Lemma 2: For any fixed GF(q), consider any M -input 2-
receiver broadcast PEC that is cross-input independent. A
rate vector (R1, R2) is achievable only if there exist 4M

However, the capacity difference between the stronger (2) and the weaker (3)
decoders is negligible when a sufficient large GF(q) is used. The reason is
that in addition to the allotted n time slots, s can simply use a few extra time
slots to “broadcast” the binary channel status [rx1, rx2]n1 to both destinations
so that a more powerful decoder in (2) can be used. The overhead of using
extra time slots to convey the binary receptions status [rx1, rx2]n1 to {d1, d2}
diminishes to zero when a sufficiently large GF(q) is used. As a result, the
capacity gap is negligible for large q. In this work we focus exclusively on
decoders of the form of (2). Also see [1] and our discussion of the practical
LNC implementation.

non-negative variables R
[m,k]
i for all i, k ∈ {1, 2} and m ∈

{1, · · · ,M} such that the following conditions are satisfied.

∀i, k ∈ {1, 2},
M∑

m=1

R
[m,k]
i = Ri (6)

and for all m ∈ {1, · · · ,M},

R
[m,1]
1

p
[m]
10 + p

[m]
11

+
R

[m,1]
2

p
[m]
10 + p

[m]
01 + p

[m]
11

≤ 1 (7)

R
[m,2]
1

p
[m]
10 + p

[m]
01 + p

[m]
11

+
R

[m,2]
2

p
[m]
01 + p

[m]
11

≤ 1. (8)

Proof: The proof simply combines the capacity outer
bound construction in [13] and the zero-feedback capacity
results in [4].

Specifically, we first construct a new M -input 2-receiver
broadcast PEC from the original broadcast PEC in the follow-
ing way. Namely, we allow d1 to observe both Z1 and Z2, the
latter of which is what d2 receives in each time slot. Since d1
can observe additional information Z2, the feedback capacity
of the new broadcast PEC is an outer bound of the feedback
capacity of the original PEC.

Further, for the new broadcast PEC, d2 is a physically de-
graded receiver when compared to d1. By [5], channel output
feedback does not improve the performance of a physically
degraded broadcast channel. As a result, the feedback capacity
of the new broadcast PEC equals to the feedback-free capacity
of the new broadcast PEC.

By the capacity expression3 in [4], the feedback-free capac-
ity of the new broadcast PEC is described by (6) with k = 2
and by (8), which, by our aforementioned reasoning, serves
as an outer bound for the feedback capacity of the original
broadcast PEC. If we swap the roles of d1 and d2 and repeat
the same argument, we can show that (6) with k = 1 and (7)
must also be an outer bound for the feedback capacity of the
original broadcast PEC. The proof of this lemma is completed
by taking the intersection of the two outer bounds.

B. An Improved Inner Bound

The capacity inner bound in Lemma 1 turns out be be
suboptimal due to the fact that it performs network coding
separately for each of the M sub-channels. To tighten the
inner bound, one can follow the ideas of [7], [10] and devise
a simple LNC scheme that encodes jointly over all M sub-
channels and achieves the following improved inner bound.

Lemma 3: For any fixed GF(q), a rate vector (R1, R2) is
LNC-achievable if there exist 2M non-negative variables R[m]

1

and R
[m]
2 , for all m = 1, · · · ,M , such that the following

3The newly constructed broadcast PEC is cross-input independent but cross-
receiver dependent. Although the results in [4] were stated for the setting of
cross-input and cross-receiver independence, we can use Sato’s argument [14]
to relax the condition of cross-receiver independence.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 4

conditions are satisfied:

∀i = 1, 2,
M∑

m=1

R
[m]
i = Ri (9)

∀m = 1, · · · ,M,
R

[m]
1 +R

[m]
2

p
[m]
01 + p

[m]
10 + p

[m]
11

< 1 (10)

R1 +

M∑
m=1

R
[m]
2

(
p
[m]
10 + p

[m]
11

)
p
[m]
10 + p

[m]
01 + p

[m]
11

 <

M∑
m=1

(
p
[m]
10 + p

[m]
11

)
(11)

R2 +
M∑

m=1

R
[m]
1

(
p
[m]
01 + p

[m]
11

)
p
[m]
10 + p

[m]
01 + p

[m]
11

 <
M∑

m=1

(
p
[m]
01 + p

[m]
11

)
.

(12)

The main idea behind Lemma 3 is to first divide the
information packets among the M inputs, see (9), and send the
packets uncodedly until each one is received by at least one of
d1 and d2, see (10). Then collect all the newly created network
coding opportunities [7], [10], [12], redistribute the coding
opportunities among all M inputs, and use the remaining
time slots (of each of the M sub-channels) to send linear
combinations of the packets that have not arrived at their
intended destinations. The proof of Lemma 3 and detailed
discussion are relegated to Appendix A. One can also verify
from the proof that the inner bound in Lemma 3 always
contains the inner bound in Lemma 1.

C. An Illustrative Example

Both the inner bounds in Lemmas 1 and 3 are suboptimal
in the following sense. For some special choices of the
parameters p

[m]
a1a2 , the two inner bounds in Lemmas 1 and 3

coincide with the outer bound in Lemma 2. However, for some
p
[m]
a1a2 values even the improved inner bound in Lemma 3 is

strictly contained in the outer bound in Lemma 2.
Take the following 2-input, 2-receiver MIMO broadcast

PEC for example. Suppose the joint reception probability
{prx1,rx2} are

p
[1]
00 = 0, p

[1]
01 = 0.125, p

[1]
10 = 0, p

[1]
11 = 0.875;

p
[2]
00 = 0.04, p

[2]
01 = 0.16, p

[2]
10 = 0.16, p

[2]
11 = 0.64,

(13)

and the channel is cross-input independent. This is basically
a setting of cross-input and cross-receiver independence with
the m-th-input-to-di sub-channel having success probability
0.875, 1, 0.8, and 0.8 for (m, i) = (1, 1), (1, 2), (2, 1), and
(2, 2), respectively. We plot in Fig. 1 the inner and outer
bounds in Lemmas 1 and 2 for this example. As can be
seen, there is a non-zero gap. Further, one can verify that
for these particular p

[m]
a1a2 values, the rate vector (R1, R2) =

(0.875, 0.96), a point within the outer bound in Lemma 2, is
strictly outside (the closure of) the improved inner bound in
Lemma 3.

To close the gap between the inner and outer bounds, we
need to either design a more powerful achievability scheme or

0.3 0.4 0.5 0.6 0.7 0.8
1

1.1

1.2

1.3

1.4

1.5

R
1

R
2

LNC capacity
Per−input LNC inner bound

Fig. 1. The LNC capacity computed by Proposition 1 versus the per-input
LNC inner bound in Lemma 1. The LNC capacity also coincides with the
capacity outer bound in Lemma 2.

further sharpen the outer bounding arguments. Both are non-
trivial tasks since (i) for arbitrary M , there is an exponentially
large number of ways of designing a coding scheme and we
can no longer rely on the ad-hoc design methodology as used
in Lemma 3; (ii) We do not have many analytical tools for
feedback capacity analysis other than the existing approach
discussed in Lemma 2.

In this work, we circumvent the above difficulties by first
focusing on LNC. We characterize the LNC capacity region
for cross-input independent M -input 2-receiver broadcast
PECs. As will be seen shortly after, this work derives a new
systematic, constructive LNC capacity proof that does not rely
on the ad-hoc design nor on the outer bounding arguments in
the existing results.

After characterizing the LNC capacity, we use some pure
algebraic arguments to prove that the LNC capacity region is
identical to the outer bound in Lemma 2. Therefore, the LNC
capacity region is the true capacity of the M -input 2-receiver
broadcast PECs.

IV. MAIN RESULTS

Consider a finite index set FTs of 18 elements:

FTs
∆
=

{0, 1, 2, 3, 7, 9, 11, 15, 18, 19, 23, 27, 31, 47, 63, 87, 95, 127}.
(14)

It will be clear in Section V why we consider such an index
set. Let b = b1b2b3 · · · b7 ∈ {0, 1}7 denote a 7-bit string. We
can also view b as a base-2 expression with the leftmost bit
being the most significant bit (MSB). We append zeros in the
prefix to make the length always 7. For example, the statement
“b = 9” is equivalent to “b = 0001001” and the statement
“b ∈ FTs and b7 = 0” is equivalent to “b ∈ {0, 2, 18}.”

The main results of this work can now be stated as follows.
Proposition 1: For any fixed GF(q), consider any cross-

input independent M -input 2-receiver broadcast PEC. A rate
vector (R1, R2) is in the LNC capacity region if and only if
there exist 18M non-negative variables x

[m]
b for all b ∈ FTs

and m = 1, · · · ,M , and 7 non-negative variables y1 to y7
such that jointly they satisfy the following 4 groups of linear
conditions:

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 5

• Group 1, termed the time-sharing conditions, has M equal-
ities:

∀m = 1, · · · ,M,

(∑
∀b∈FTs

x
[m]
b

)
≤ 1. (15)

• Group 2, termed the rank-conversion conditions, has 7
equalities:

y1 =
M∑

m=1

(∑
∀b∈FTs and b1=0

x
[m]
b

)
·
(
p
[m]
10 + p

[m]
11

)
(16)

y2 =
M∑

m=1

(∑
∀b∈FTs and b2=0

x
[m]
b

)
·
(
p
[m]
01 + p

[m]
11

)
(17)

y3 = R1 +
M∑

m=1

(∑
∀b∈FTs and b3=0

x
[m]
b

)
·
(
p
[m]
10 + p

[m]
11

)
(18)

y4 = R2 +

M∑
m=1

(∑
∀b∈FTs and b4=0

x
[m]
b

)
·
(
p
[m]
01 + p

[m]
11

)
(19)

y5 =
M∑

m=1

(∑
∀b∈FTs and b5=0

x
[m]
b

)
·
(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
(20)

y6 = R1 +

M∑
m=1

(∑
∀b∈FTs and b6=0

x
[m]
b

)
·
(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
(21)

y7 = R2 +
M∑

m=1

(∑
∀b∈FTs and b7=0

x
[m]
b

)
·
(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
(22)

• Group 3, termed the rank-comparison conditions, has 7
inequalities:

y3 ≤ y6, y4 ≤ y7 (23)
y6 ≤ (R1 +R2), y7 ≤ (R1 +R2) (24)
y5 + y3 − y6 ≥ y1 (25)
y5 + y4 − y7 ≥ y2 (26)
y6 + y7 − (R1 +R2) ≥ y5. (27)

• Group 4, termed the decodability conditions, has 2 equalities:

y3 = y1 and y4 = y2. (28)

Obviously, the LNC capacity region in Proposition 1 is an
inner bound of the true capacity region. A stronger result can
then be proven as follows.

Proposition 2: For any fixed GF(q), the LNC capacity
region in Proposition 1 matches the outer bound in Lemma 2.
Therefore, the Shannon capacity region can be described either
by the LP problem in Lemma 2 that contains 4M variables and
4+ 2M (in)equalities, or by the LP problem in Proposition 1
that contains 18M + 7 variables and M + 16 (in)equalities.

The proof of Proposition 1 is relegated to Sections V and
VI. The proof of Proposition 2 is by some pure algebraic
arguments, which are provided in Appendix B. A byproduct of

the proof of Proposition 2 is the following lemma that sheds
further insights to the LP problem in Proposition 1.

Lemma 4: For any given (R1, R2) value, if the correspond-
ing LP problem in Proposition 1 is feasible, then there exist
18M x

[m]
b and 7 yi variables satisfying simultaneously (15)

to (28) and the following additional property: x[m]
b ̸= 0 only

if b ∈ {0, 9, 18, 27, 31, 63, 95}.
The proof of Lemma 4 is provided in Appendix B. Al-

gebraically, the above lemma implies that we can, without
loss of generality, reduce the number of x

[m]
b variables from

18M to 7M when solving the LP problem in Proposition 1.
The physical meaning of Lemma 4 will be discussed in
Section VI-D.

Proposition 1 characterizes the capacity of cross-input inde-
pendent broadcast PECs, and it can also be used as an inner
bound for cross-input dependent broadcast PECs through the
following lemma.

Lemma 5: For any fixed GF(q), consider two M -input 2-
receiver broadcast PECs CH1 and CH2 that have the same per-
input marginal reception probabilities {p[m]

a1a2 : ∀m,∀a1, a2 ∈
{0, 1}} while CH1 is cross-input independent but CH2 is not.
Any (R1, R2) that is achievable (resp. LNC achievable) for
CH1 is also achievable (resp. LNC achievable) for CH2.

This lemma can be proven by interleaving several CH1-
based constituent codes over the time axis and the M -symbols,
and then apply the interleaved super code to CH2. A detailed
proof is provided in Appendix C.

V. PROOF OF PROPOSITION 1 FOR M = 1

We first provide the proof of Proposition 1 for the case of
M = 1, which can be viewed as an alternative proof for the
existing M = 1 achievability results in [7]. The concepts and
terminology used in the proof of M = 1 case will be useful
when proving the general case of M ≥ 2 in Section VI.

A. Basic Definitions

Consider the case of M = 1. That is, for each time slot,
s sends one symbol W (t) = X · cTt where ct is an n(R1 +
R2)-dimensional (row) coding vector consisting of the coding
coefficients and cTt is the transpose of ct. When M = 1 the
receiving set rxi of di can take values as either rxi = ∅ or rxi =
{1} where the former indicates that di received an erasure
while the latter indicates that di received the first (and also
the only) transmitted symbol W (t).

For each di, we define the knowledge space Si(t) in the
end of time t by

Si(t)
∆
= span{cτ : ∀τ ≤ t s.t. 1 ∈ rxi at time τ}. (29)

That is, Si(t) is the linear span of the vectors of those packets
that have successfully arrived at di. By convention, we define
the linear span of an empty vector set to be a linear sub-space
containing only the all-zero vector 0. Namely, span(∅) = {0}.
For example, Si(0) = {0} by this definition.

One can easily see that in the end of time t, di is able to
compute the value of X · vT for all v ∈ Si(t) by linearly
combining Zi(τ) for all τ ≤ t.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 6

For j = 1 to n(R1 + R2), let δj denote an n(R1 + R2)-
dimensional elementary delta (row) vector with its j-th co-
ordinate being one and all the other coordinates being zero.
Define Ω

∆
= span{δj : j = 1, · · · , n(R1 +R2)} as the overall

message space and define Ω1
∆
= span{δj : j = 1, · · · , nR1}

and Ω2
∆
= span{δj : j = (nR1 + 1), · · · , n(R1 +R2)} as the

individual message spaces for d1 and d2, respectively. Both
Si(t) and Ωi are linear subspaces of Ω for i = 1, 2. Sometimes
we also call Ω the overall coding vector space since any inter-
flow coding vector ct must be in Ω.

For any two linear subspaces A,B ⊆ Ω, define A ⊕ B
∆
=

span{v : ∀v ∈ A ∪ B} as the linear sum space of A and
B. From the discussion in the beginning of this subsection, di
can decode the desired Xi,1, · · · , Xi,nRi symbols if and only
if in the end of time n we have Ωi ⊆ Si(n), or equivalently

(Si(n)⊕ Ωi) = Si(n). (30)

B. Break Down The Design Choices

We now demonstrate how to use the knowledge spaces to
break down the design choices of LNC.

In the beginning of time t (or equivalently in the end of
time t − 1), there are qn(R1+R2) different ways of designing
the coding vector ct ∈ Ω. To simplify the design choices, we
consider the following 7 linear subspaces:

A1
∆
= S1; A2

∆
= S2; (31)

A3
∆
= S1 ⊕ Ω1; A4

∆
= S2 ⊕ Ω2; A5

∆
= S1 ⊕ S2; (32)

A6
∆
= S1 ⊕ S2 ⊕ Ω1; A7

∆
= S1 ⊕ S2 ⊕ Ω2, (33)

for which we use S1 and S2 as shorthand for S1(t − 1) and
S2(t−1), the knowledge spaces in the end of time t−1. In the
subsequent discussion, we often drop the input argument “(t−
1)” when the time instant of interest is clear in the context.

We can now partition the overall coding vector space Ω into
27 = 128 disjoint subsets depending on whether ct is in Ak or
not, for k = 1, · · · , 7. Each subset is termed a coding type and
can be indexed by a 7-bit string b = b1b2 · · · b7 where each bk
indicates whether ct ∈ Ak or not. For example, type-0010111
contains the coding vectors that are in A3∩A5∩A6∩A7, but
not in any of A1, A2, and A4. Those coding vectors are now
denoted by

TYPE23 = TYPE0010111

∆
= (A3 ∩A5 ∩A6 ∩A7)\(A1 ∪A2 ∪A4) (34)
= (A3 ∩A5)\(A1 ∪A4) (35)

where (35) follows from the fact that by (31) to (33) we
have A5 ⊆ (A6 ∩ A7) and A2 ⊆ A4. Note that some of
the 128 coding types are always empty, which are termed the
infeasible types. For example, type-1000000 is infeasible since
there cannot be any v ∈ Ω that is in A1 = S1 but not in
A3 = S1 ⊕ Ω1 ⊇ A1. Overall, there are only 18 Feasible
Types (FTs) and the list of them is the FTs defined in (14).

This new framework allows us to focus on the “types” of
the coding choices without worrying about designing the exact
values of the individual coordinates of ct ∈ Ω. Specifically,

we will focus on the following design problem: From which
one of the 18 FTs should we choose ct in order to maximize
the throughput? We will also analyze the performance of any
given scheme by quantifying how frequently a coding vector
ct of type-b is sent.

C. The “Only If” Analysis of Proposition 1 For The Case of
M = 1

Fix any given linear network code such that di can decode
all Xi,1 to Xi,nRi in the end of time n for all i = 1, 2 with
close-to-one probability. Since the 18 disjoint FTs fully cover4

Ω, for each time t we can always label the coding choice
ct of the given LNC scheme as one of the 18 FTs. Define
x
[1]
b

∆
= 1

nE
{∑n

t=1 1{ct∈TYPEb}
}

as the normalized expected
number of ct of type b. Since the total number of time slots
is n, (15) holds for the case of M = 1 by the time-sharing
argument. In the following, we will establish additional linear
equalities/inequalities that govern the values of xb.

Consider the linear spaces Ak, k = 1 to 7, in the beginning
of time 1 and in the end of time n, and denote them by
Ak(0) and Ak(n), respectively. Consider A6 = S1 ⊕ S2 ⊕Ω1

for example. By (29) and (33) we have Rank(A6(0)) =
Rank(Ω1) = nR1. We then note that when source s sends
a ct ∈ TYPEb for some b with b6 being 0, then that ct is not
in A6 = S1 ⊕ S2 ⊕ Ω1. Therefore, whenever one of d1 and
d2 receives W (t) = X · cTt successfully, the rank of A6 will
increase by one. We thus have

Rank(A6(0)) +
∑

∀b w. b6=0

(
n∑

t=1

1{ ct ∈ TYPEb, and
one of {d1, d2} receives it

}
)

= Rank(A6(n)) (36)

Define yk
∆
= 1

nE {Rank(Ak(n))} as the normalized expected
rank of Ak(n). Taking the normalized expectation of (36),
counting only the FTs, and by the linearity of expectation and
the stationarity and memorylessness of the channel, we have
proven (21) for M = 1. By similar rank-conversion arguments,
we can also prove (16) to (22) for M = 1. Detailed derivation
of (16) to (22) is relegated to Appendix D.

In the following, we will derive the rank comparison
inequalities in Group 3. By (31) to (33), in the end of time n
we must have

A3 ⊆ A6, A4 ⊆ A7, A6 ⊆ Ω, and A7 ⊆ Ω. (37)

Considering the normalized expected ranks of the above
inequalities in the end of time n, we have proven (23) and (24).
Before continuing, we present the following self-explanatory
lemma.

Lemma 6: For any two linear spaces B1 and B2, we have
Rank(B1⊕B2)+Rank(B1∩B2) = Rank(B1)+Rank(B2).

We then consider the following inequality:

Rank(S1 ⊕ S2) + Rank(S1 ⊕ Ω1)− Rank(S1 ⊕ S2 ⊕ Ω1)

= Rank((S1 ⊕ S2) ∩ (S1 ⊕ Ω1)) (38)
≥ Rank(S1) (39)

4The actual set of vectors in a type, e.g., (34), evolves over time since the
Ak definitions in (31) to (33) depend on the knowledge spaces S1 and S2 in
the end of time t− 1. However, the 18 FTs always cover Ω for any t value.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 7

where (38) follows from Lemma 6, and (39) follows from
simple set operations. By taking the normalized expectation
of (39) in the end of time n, we have proven (25). Similarly,
we can derive the following inequalities:

Rank(S1 ⊕ S2) + Rank(S2 ⊕ Ω2)

− Rank(S1 ⊕ S2 ⊕ Ω2) ≥ Rank(S2) (40)
Rank(S1 ⊕ S2 ⊕ Ω1) + Rank(S1 ⊕ S2 ⊕ Ω2)

− Rank(Ω) ≥ Rank(S1 ⊕ S2), (41)

and use them to prove (26) and (27), respectively.
Finally, by definition we have

0 ≤ Rank(Si(n)⊕ Ωi)− Rank(Si(n))

≤ Rank(Si(n)⊕ Ωi) ≤ Rank(Ω) = n · (R1 +R2).

By the decodability condition (30), Prob(Rank(Si(n)⊕Ωi) ̸=
Rank(Si(n))) < ϵ. We thus have

0 ≤ E{Rank(Si(n)⊕ Ωi)} − E{Rank(Si(n))}
≤ ϵ · n · (R1 +R2).

Taking the normalized expectation and by (31) and (32), we
have

0 ≤ y3 − y1 ≤ ϵ · (R1 +R2)

and 0 ≤ y4 − y2 ≤ ϵ · (R1 +R2). (42)

The above construction shows that given any ϵ > 0, we
can use the corresponding LNC scheme to compute the x

[1]
b

and yk values that satisfy (15)–(27) and (42). Since the above
construction holds for arbitrarily small ϵ > 0, it is guaranteed
that the feasible region of the linear (in)equalities (15) to (28)
is non-empty. The above discussion thus proves that for the
case of M = 1, if (R1, R2) is LNC-achievable, there exist
x
[1]
b and y1 to y7 values satisfying Proposition 1.

D. The “If” Analysis of Proposition 1 For the Case of M = 1
— Part I: A Polytope-Based View

For the achievability proofs in this section, we temporarily
assume that the underlying GF(q) satisfies q ≥ 3. In Sec-
tion VI-C, we will relax this assumption and allow for the
case of GF(2).

A critical difference between Lemma 2 and the outer bound-
ing part of Proposition 1 is that the latter is a constructive
approach while the former is implicitly a cut condition. As
will be demonstrated, any {x[1]

b : ∀b ∈ FTs} and y1 to y7
satisfying Proposition 1 can be directly translated to a rate-
(R1, R2) LNC scheme. On the other hand, it is not clear how
the auxiliary variables R

[m,k]
i in Lemma 2 could guide the

LNC design.
We first introduce some notation before elaborating the main

ideas of the new achievability scheme. Consider M = 1
and any rate vector (R1, R2) that is in the interior5 of the
capacity region in Proposition 1. Denote the companying
variable values in Proposition 1 by {ẍ[1]

b : ∀b ∈ FTs} and

5Being in the interior of the capacity region means that both R1 and R2 are
strictly positive and there exists a small δ > 0 such that rate (R1+δ,R2+δ)
is also in the capacity region.

ÿ1 to ÿ7 such that jointly these variable values and (R1, R2)

satisfy (15) to (28). Note that the difference between ẍ
[1]
b and

x
[1]
b is that the former is a constant scalar value corresponding

to the (R1, R2) of interest while the latter is a variable of
a linear programming problem. For simplicity, oftentimes we
use the notation {ẍ[1]

b : ∀b} that implicitly assumes that b
must be in FTs.

Our main idea is as follows. For any t, in the beginning
of time t source s first uses the previous reception status
[rx1, rx2]

t−1
1 to determine the subspaces A1 to A7. Then we

simply let s choose the ct from6 one of the 18 FTs as discussed
in Section V-B. To better describe the operations, we define
random processes X

[1]
b (t), ∀b ∈ FTs, as follows:

∀b ∈ FTs, X
[1]
b (t) =

1

n

t∑
τ=1

1{cτ∈TYPEb} (43)

being the cumulative frequency7 of using type-b coding
choices until time t.

We then have the following critical observation:

If we can choose the coding type b used at time
t for all t = 1, · · · , n in a way that ensures that
in the end of time n, the cumulative frequencies
X

[1]
b (n) = ẍ

[1]
b for all b ∈ FTs, then the outer

bound analysis in Section V-C guarantees that the
resulting LNC scheme achieves rate (R1, R2) with
close-to-one probability.

The reason is as follows. If we can attain the desired fre-
quency {ẍ[1]

b : ∀b} with probability one, then the proof
of the rank-conversion equalities in Section V-C ensures
that for this particular scheme, for any k = 1, · · · , 7,
the normalized expected rank of Ak(n) is the same as
the ÿk value corresponding to the target frequency {ẍ[1]

b :
∀b}. Therefore, in the end of time n, we will have
E{Rank(A1(n))} = E{Rank(A3(n))}. Note that by defini-
tion we always have Rank(A1(n)) ≤ Rank(A3(n)). This thus
implies Rank(A1(n)) = Rank(A3(n)) with probability one
and d1 can decode its desired messages. By symmetry, so does
d2. Note that in practice, we may not be able to attain the
target frequency {ẍ[1]

b : ∀b} with probability one. However,
as long as the {X [1]

b (n) : ∀b} can be made sufficiently close
to {ẍ[1]

b : ∀b}, then we can achieve ≥ (1 − ϵ) fraction of
the target rate pair (R1, R2) with probability ≥ (1 − ϵ) for
arbitrary ϵ > 0 by the continuous nature of the LP problem
and by the law of large numbers. As can be seen from this
argument, the decodability condition (the Group 4 equalities
in Proposition 1) is now converted to a new goal of attaining
the target relative frequency {ẍ[1]

b : ∀b}.

6If there are more than one vector in a FT of interest, then s chooses
arbitrarily one of them.

7The cumulative frequency up to time t is often defined with 1
t

as the
normalization factor. However, in (43) we use 1

n
as the normalization factor

instead. The benefit of using 1
n

as the normalization factor is that we can
concentrate on the increments over time without worrying about the time-
dependent normalization factor 1

t
.

Also, for comparison, X
[1]
b (t) is the cumulative frequency until time t

while Xi,1 to Xi,nRi
are the message symbols.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 8

Before proceeding, we first describe the polytope of the
cumulative frequency, which, for the case of M = 1, is
a polytope in the 18-dimensional Euclidean space. We now
specify how to construct this polytope. Fix (R1, R2). We first
notice that among the four groups of conditions, Group 2
the rank conversion conditions are equalities that convert
{x[1]

b : ∀b} to {y1, · · · , y7}. As a result, we can substitute
all the y variables in Group 3 by the equalities of Group 2.
In the end, Groups 1 and 3 become (1+7) linear inequalities
governing the 18 non-negative variables {x[1]

b : ∀b}. We now
define Γ, the polytope of the cumulative frequency, as the
polytope8 in the first quadrant of the 18-dimensional Euclidean
space governed by the inequalities of Groups 1 and 3.

We then note that in the sense of the first-order analysis, for
any time t the empirical cumulative frequency {X [1]

b (t) : ∀b}
must be inside the polytope Γ since

∑
∀b X

[1]
b (t) = t

n ≤ 1
and the rank-comparison inequalities are derived by the re-
lationships among the linear subspaces A1 to A7 and thus
hold for any time instant t. Also note that by the definition in
(43), we have X

[1]
b (0) = 0 for all b ∈ FTs. As a result,

from this polytope interpretation the new goal becomes to
make sure that as time t increases, the cumulative frequency
{X [1]

b (t) : ∀b} until time t has a trajectory within the polytope
Γ that starts from the origin and ends in the 18-dimensional
point ⃗̈x ∆

= {ẍ[1]
b : ∀b}.

Since there are infinitely many ways of designing a trajec-
tory {X [1]

b (t) : ∀b} in Γ with the start point being the origin
and the end point being ⃗̈x, there are infinitely many ways
of designing an LNC scheme achieving rates (R1, R2). We
propose to use the following “tunneling approach,” which is
named after the fact that its goal is to create a tunnel in the
polytope Γ.

More specifically, the tunneling approach takes the most
straightforward approach, which ensures that the trajectory
{X [1]

b (t) : ∀b} follows a straight “tunnel” connecting the
origin and the end point ⃗̈x. Note that in general the trajectory
cannot be a straight line connecting 0⃗ and ⃗̈x. The reason is that
for every time t, we can only choose one of the 18 different
coding types. Therefore, the trajectory can only zigzag along
the 18 orthogonal axes and cannot follow a straight line
connecting the origin and ⃗̈x. As will be formalized in the
later discussion, the tunneling approach first defines a tunnel
with strictly positive volume and then allows the trajectory to
zigzag within the tunnel and finally reach the end point ⃗̈x.

We conclude this subsection by discussing some properties
of the 18-dimensional polytope.

Lemma 7: The above 18-dimensional polytope, denoted by
Γ, satisfies the following properties:
• Property 1: Both the point ⃗̈x and the origin belong to Γ.
• Property 2: If (R1, R2) is in the interior of the capacity
region in Proposition 1 and the 2-receiver broadcast PEC is
not physically degraded, then the interior of Γ is non-empty.

The proof of Lemma 7 is relegated to Appendix E.

8One can see that Γ depends on the given target rates (R1, R2), which are
assumed to be constant in our discussion.

E. The “If” Analysis of Proposition 1 For the Case of M = 1
— Part II: The Tunneling Approach

We now define the tunnel in a given polytope.
Definition 5: Consider two points x⃗start and x⃗end in a poly-

tope Γ such that each coordinate of x⃗end is strictly larger than
each coordinate of x⃗start. The line connecting x⃗start and x⃗end
contains all the convex combinations of the terminal points
x⃗start and x⃗end. For any δ > 0, a size-δ tunnel T connecting
x⃗start and x⃗end is the maximum (closed) set of points satisfying
the following conditions: (i) x⃗ ∈ T implies that x⃗ satisfies the
coordinate-wise inequality x⃗start ≤ x⃗ ≤ x⃗end; and (ii) x⃗ ∈ T
implies that there exists a point y⃗ in the line connecting x⃗start
and x⃗end such that the Euclidean distance d(x⃗, y⃗) ≤ δ.

The intuition behind the above definition is straightforward.
Condition (ii) allows each tunnel to have a positive volume;
and Condition (i) ensures that a tunnel is confined between
the two terminal points x⃗start and x⃗end.

Definition 6: A tunnel T of a polytope Γ is proper if T is
contained in the interior of Γ.

As discussed in Section V-D, the goal is to design an LNC
scheme with the trajectory of {X [1]

b (t) : ∀b} confined in a
proper tunnel T connecting 0 and ⃗̈x. Unfortunately, such a
proper tunnel T does not exist in general. As a result, we
slightly revise our approach in the following way: For any
ϵ > 0 we find a pair of starting and ending nodes x⃗start and
x⃗end in the interior of Γ that satisfy

x⃗start < x⃗end in a coordinate-wise sense; (44)

d(0⃗, x⃗start) < ϵ and d(x⃗end, ⃗̈x) < ϵ. (45)

We can then divide the trajectory construction into 3 phases:
Phase 1: The first mile from 0⃗ to x⃗start; Phase 2: From x⃗start
to x⃗end along a proper tunnel T; and Phase 3: The last mile
from x⃗end to ⃗̈x.

For the following discussion, we assume that the 2-receiver
broadcast PEC is not physically degraded. The physically-
degraded setting can be viewed as a degenerate case and the
corresponding achievability scheme can be derived in a similar
way.

Property 2 of Lemma 7 ensures that we can always9 find in
the interior of Γ the starting and ending node pair x⃗start and
x⃗end that satisfy (44) and (45). Since both x⃗start and x⃗end are in
the interior of Γ, there is a proper tunnel T connecting x⃗start
and x⃗end. Since (45) is satisfied, it is intuitive that the amount
of time necessary for executing Phases 1 and 3 is roughly
O(ϵn) time slots. The time duration of executing Phases 1
and 3 is thus negligible10 when we use a sufficiently small

9Lemma 7 ensures that 0 and ⃗̈x are in (the boundary of) the polytope
Γ. Lemma 7 also ensures that the interior of Γ is not empty. Therefore, we
can always find an x⃗start in the interior that is arbitrarily close to 0 and find
another x⃗end in the interior that is arbitrarily close to the final destination ⃗̈x,
which satisfy the distance requirement (45). Moreover, since x⃗end is in the
interior of Γ, all its coordinates are strictly positive. Since x⃗start only needs
to be chosen arbitrarily close to 0, we can thus choose x⃗start to also satisfy
(44).

10More explicitly, in Appendix F we have shown that the amount of
time to execute Phase 1 is O(ϵn) time slots and the information-loss for
skipping Phase 3 is also O(ϵn) packets when compared to the nR1 and nR2

information symbols. As a result, the throughput loss from the normalized rate
region’s perspective can be made arbitrarily small when choosing a sufficiently
small ϵ in (45).

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 9

ϵ and a sufficiently large n. In the following, we thus only
explain how to implement Phase 2 while relegating the detailed
implementation of Phases 1 and 3 to Appendix F.

We first describe how to implement Phase 2: From x⃗start

to x⃗end along a proper tunnel T. This phase can be divided
into finitely many sub-phases. For the beginning of each sub-
phase, say time t, if the cumulative frequency {X [1]

b (t) : ∀b}
is not the same as the end point x⃗end, then by the definition
of the tunnel T, there must exist at least one b̃ ∈ FTs and
a sufficiently small δb̃ > 0 such that the 18-dimension point
{X [1]

b (t) : ∀b ̸= b̃} ∪ {X [1]

b̃
(t) + δb̃} is still inside the tunnel

T. Choose arbitrarily one such b̃ and fix it. Then choose the
largest possible δb̃ such that {X [1]

b (t) : ∀b ̸= b̃}∪ {X [1]

b̃
(t)+

δb̃} is still inside the tunnel T.
After selecting the b̃ and δb̃ values, we will keep sending

coding vectors of type-b̃ for the current sub-phase, and this
sub-phase will last for n · δb̃ time slots. After the current sub-
phase ends, i.e., in the end of time t′

∆
= t + nδb̃, we will

restart the process and choose a new set of b̃ and δb̃ based
on {X [1]

b (t′) : ∀b}. Repeat this process until the cumulative
frequency becomes x⃗end. One can easily see that this iterative
construction ends after finitely11 many sub-phases. Moreover,
since x⃗end is in the interior of Γ, it implies that x⃗end satisfies
(15) with strict inequality. By the definition of X [1]

b (t) in (43),
when {X [1]

b (t) : ∀b} = x⃗end, we must have t < n. That is,
Phase 2 will finish within the time budget n.

To prove the correctness of the above implementation, we
need to show that for each sub-phase the chosen coding type
TYPEb̃ must remain non-empty for the allocated time duration
of nδb̃ time slots with close-to-one probability so that with
close-to-one probability we can choose a coding vector from
TYPEb̃ for every time slot of the sub-phase of interest. Instead
of proving a particular TYPEb̃ being non-empty, we prove
the following stronger statement instead: Consider any fixed
GF(q) with q ≥ 3. If the cumulative frequency {X [1]

b (t) : ∀b}
is within the proper tunnel T in time t, then with close-to-one
probability TYPEb ̸= ∅ for all b ∈ FTs. This implies that we
can freely choose (from the 18 FTs) at any time t as long as
we let {X [1]

b (t) : ∀b} stay within the proper tunnel T. Such
a fact/observation is the building foundation of the tunneling
approach.

Again we rely on the law of large numbers and the first-
order expectation-based analysis to prove the above central
statement. For any {X [1]

b (t) : ∀b} ∈ T in time t, since T
is a proper tunnel, it must satisfy (15) and (23)–(27) with
strict inequality. Since (15) is satisfied with strict inequality,
we have not used up the total time budget of n time slots
and we can still choose a coding vector for the current time
slot. Since (23) to (27) are satisfied with strict inequality
in the beginning of the current time slot t, by the rank
conversion arguments in Section V-C, the set/rank inequalities
in (37)–(41) for time t are strict inequalities with close-to-one
probability. What remains to be proven is that when (37)–(41)

11The number of sub-phases depends only on the size of the tunnel T and
does not depend on n, the block length of the network code. This observation
is critical when applying the arguments of the law of large numbers. Also see
the discussion in Appendix A-C.

TABLE I
THE CODING TYPES AND THE ASSOCIATED RANK COMPARISON

CONDITIONS THAT GUARANTEE NON-EMPTINESS.

TYPE0 ⇔ A6 (Ω, A7 (Ω; TYPE1 ⇔ A6 (Ω, A4 (A7;
TYPE2 ⇔ A7 (Ω, A3 (A6; TYPE3 ⇔† strict (41), A3 (A6,
TYPE7 ⇔ A3 (A6, A4 (A7; A4 (A7;
TYPE9 ⇔ A6 (Ω; TYPE11 ⇔strict (41), A3 (A6;
TYPE15 ⇔strict (40), A3 (A6; TYPE18 ⇔A7 (Ω;
TYPE19 ⇔strict (41), A4 (A7; TYPE23 ⇔strict (39), A4 (A7;
TYPE27 ⇔strict (41); TYPE31 ⇔strict (39) and (40);
TYPE47 ⇔A3 (A6; TYPE63 ⇔strict (39);
TYPE87 ⇔A4 (A7; TYPE95 ⇔strict (40);
TYPE127 is always non-empty.

† For coding type 3, we further assume the underlying GF(q) satisfies q ≥ 3.

are strict inequalities, TYPEb ̸= ∅ for all b ∈ FTs.
We first prove the case in which b = 23. Note that TYPE23

is defined in (35) and whether TYPE23 ̸= ∅ holds can be
decided by comparing the sizes of (A3 ∩ A5) and ((A3 ∩
A5) ∩ (A1 ∪ A4)). Also note that |A3 ∩ A5| = qRank(A3∩A5)

and

qmax(Rank(A3∩A5∩A1),Rank(A3∩A5∩A4)) (46)
= max(|A3 ∩A5 ∩A1|, |A3 ∩A5 ∩A4|)
≤ |(A3 ∩A5) ∩ (A1 ∪A4)| (47)
≤ |A3 ∩A5 ∩A1|+ |A3 ∩A5 ∩A4| − 1 (48)

= qRank(A3∩A5∩A1) + qRank(A3∩A5∩A4) − 1, (49)

where (47) follows from simple set operations and (48) follows
from that the origin 0 is always in the intersection of two
subspaces A3 ∩A5 ∩A1 and A3 ∩A5 ∩A4. Since q ≥ 2, we
thus have TYPE23 ̸= ∅ if and only if

Rank(A3 ∩A5)

> max(Rank(A3 ∩A5 ∩A1),Rank(A3 ∩A5 ∩A4)). (50)

In Appendix G we have proven that

Rank(A3 ∩A5)− Rank(A3 ∩A5 ∩A1)

= Rank(S1 ⊕ Ω1) + Rank(S1 ⊕ S2)

− Rank(S1 ⊕ S2 ⊕ Ω1)− Rank(S1) (51)

and

Rank(A3 ∩A5)− Rank(A3 ∩A5 ∩A4)

= Rank(S1 ⊕ S2 ⊕ Ω2)− Rank(S2 ⊕ Ω2)

= Rank(A7)− Rank(A4).

The above analysis shows that when both (39) and A4 ⊆ A7

are strict inequalities, TYPE23 ̸= ∅ and choosing a ct from
TYPE23 is possible. By similar arguments, it can be proven
that (i) Each FT is associated with a subset of inequalities
of (37)–(41); and (ii) A FT is non-empty if and only if
the inequalities in the corresponding subset are all strict.
Table I summarizes the mapping from “the FT of interest
being non-empty” to “the corresponding subset of inequalities
being strict.” The detailed derivation of Table I is relegated to
Appendix G.

Therefore, when all 7 inequalities in (37)–(41) are strict, all
18 TYPEb are non-empty. As a result, we have proven that if
the cumulative frequency {x[1]

b (t) : ∀b} is within the proper

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 10

tunnel T, then with close-to-one probability TYPEb ̸= ∅ for
all b ∈ FTs. The “If” analysis of Proposition 1 is complete.

VI. PROOF OF PROPOSITION 1 FOR ARBITRARY M

The proof for the case of M = 1 can be readily generalized
for the case of arbitrary M .

A. The “Only If” Analysis of Proposition 1 For The Case of
Arbitrary M

We follow the knowledge-space-based approach as in the
case of M = 1. Specifically, recall that the (nR1 + nR2) ×
M coding matrix Ct for time t can be described as Ct =
[cTt,1, c

T
t,2, · · · , cTt,M] where the n(R1 + R2)-dimensional row

vector ct,m describes the coding vector used to generate the
m-th input W [m] at time t for all m ∈ {1, · · · ,M}. For any
i ∈ {1, 2}, t ∈ {1, · · · , n}, and m ∈ {1, · · · ,M}, we now
define the knowledge space Si(t.m) by

Si(t.m)
∆
= span{cτ,h : ∀τ and h such that either

(i) τ < t and h ∈ rxi at time τ ;

or (ii) τ = t, h ≤ m, and h ∈ rxi at time t}.
(52)

That is, Si(t.m) is the linear span of the vectors of those
packets that have successfully arrived at di either before time
instant t or at time instant t but only counting the vectors from
the first m input packets W [1](t) to W [m](t). In the broadest
sense, it is equivalent to splitting each time index t into M
sub time instants denoted by t.1 to t.M and assuming that
each of the M inputs W [1](t) to W [M](t) is sent sequentially
at the split time instant t.m, m = 1 to M .

In the beginning of any split time instant t.m, we define
A1 to A7 in the same way as in (31) to (33) based on the
knowledge spaces S1(t.(m − 1)) and S2(t.(m − 1)) in the
end of the split time instant t.(m− 1). We can also define 18
feasible coding types TYPEb in the same way as described
in Section V-B.

Fix any given linear network code such that di can decode
all Xi,1 to Xi,nRi in the end of time n for all i = 1, 2 with
close-to-one probability. Since the 18 disjoint FTs fully cover
Ω, for each split time instant t.m we can always label the
coding choice ct,m of the given LNC scheme as one of the
18 FTs. Define

x
[m]
b

∆
=

1

n
E

{
n∑

t=1

1{ct,m∈TYPEb in the beginning of time t.m}

}
as the normalized expected number of ct,m of type b where
TYPEb is evaluated in the beginning of the split time instant
t.m. Since the total number of time slots is n, the above
construction of x[m]

b must satisfy (15) for the case of arbitrary
M values.

We now establish the rank conversion inequalities (16) to
(22). Consider the linear spaces Ak, k = 1 to 7, in the
beginning of the split time instant 1.1 and in the end of the
split time instant time n.M , and denote them by Ak(0) and
Ak(n.M), respectively. Consider A6 = S1 ⊕ S2 ⊕ Ω1 for

example. By (52) and the same reasoning as in Section V-C,
we have

Rank(A6(0))

+
M∑

m=1

∑
∀b w. b6=0

 n∑
t=1

1 ct,m ∈ TYPEb in the
beginning of time t.m; and
one of {d1, d2} receives it




= Rank(A6(n.M)). (53)

Define yk
∆
= 1

nE {Rank(Ak(n.M))} as the normalized ex-
pected rank of Ak(n.M). Taking the normalized expectation
of (53), counting only the FTs, noting that the channel is
cross-input independent, and by the linearity of expectation
and the stationarity and memorylessness of the channel, we
have proven that (21) must hold for arbitrary M values. By
similar rank-conversion arguments, we can also prove (16) to
(22) for arbitrary M values.

Note that the argument for the rank comparison inequalities
and the decodability equalities in Section V-C does not depend
on the value of M . Therefore the rank comparison inequalities
and the decodability equalities still hold. The “Only If”
direction of Proposition 1 has thus been proven for arbitrary
M values.

B. The “If” Analysis of Proposition 1 For the Case of Arbi-
trary M

Benefiting from the constructive nature of our approach,
we can easily prove the following statement by the same
arguments as used in Sections V-D and V-E.

Suppose that the source node s designs the cod-
ing vectors ct,m sequentially in the order of (t,m) =
(1, 1), (1, 2), · · · , (1,M), (2, 1), · · · , (2,M), (3, 1),
· · · , (n,M). Also suppose when s designs ct,m,
there is a genie informing s the reception status
of all ct̃,m̃ for all (t̃, m̃) before (t,m). Then we
can achieve any (R1, R2) that is in the interior of
Proposition 1.

That is, we simply need to use the tunneling approach
to achieve the desired long-term relative frequency {ẍ[m]

b :
∀b,m} in the same way as described in Sections V-D and V-E.
However, the above statement alone is not sufficient to prove
the “If” direction of Proposition 1 due to the fact that there
exists no such genie. More specifically, each destination di
can only report its reception status rxi after the time instant t
rather than reporting its reception after every split time instant
t.m. As a result, in the beginning of time t, source s needs
to design the coding vectors ct,m for all m ∈ {1, · · · ,M}
simultaneously, and cannot design ct,m sequentially since
the latter requires the information of the knowledge spaces
Si(t.(m−1)) for every split time instant t.m. In the following,
we argue that even without the help from the genie, source s
can still achieve the outer bound established in Section VI-A.

The main difference between a genie-aided solution and a
practical solution is the following. For any t ∈ {1, · · · , n}
and m ∈ {1, · · · ,M}, when designing the coding vector
ct,m for the m-th input at time t, a genie-aided solution has

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 11

the information of the knowledge spaces S1(t.(m − 1)) and
S2(t.(m−1)) in the end of the last split time instant t.(m−1)
while a practical solution can only access the information of
the knowledge spaces S1((t−1).M) and S2((t−1).M) in the
end of the last time slot (t − 1). With the correctly updated
information, the coding type TYPEb chosen by a genie-aided
solution reflects correctly the relative contribution of the m-
th input W [m] at time t with respect to the previous split
time instants (t̃, m̃) before (t,m). On the other hand, when
a practical scheme chooses to send a coding type TYPEb

over the m-th input W [m] at time t, the decision is based
on the outdated information Si((t − 1).M), which does not
capture any changes due to the random reception status of the
first (m− 1) inputs W [1] to W [m−1]. Therefore, the practical
scheme cannot predict the actual contribution of W [m] when
it is received by the destination di. As a result, even though
s intends to send a ct,m of type-b, when the destination di
actually receives it, the ct,m may have the same effect as
sending a different coding type b′.

Consider the following example with M = 2, nR1 = 2,
and nR2 = 1. That is, we have two symbols X1 and X2 for
d1 and one symbol Y for d2. The overall message space is
Ω = (GF(q))3 and the individual message spaces are Ω1 =
span{(1, 0, 0), (0, 1, 0)} and Ω2 = span{(0, 0, 1)}. Suppose in
the very beginning of the transmission, source s would like
to send a type-18 (type-0010010) coding vector via the first
input W [1] and send a type-0 vector via the second input W [2].
Since neither d1 nor d2 has received anything in the past, we
have S1 = {(0, 0, 0)} = S2. As a result, one can verify that
the coding vector c1 = (1, 0, 0) is a type-18 coding vector and
c2 = (1, 0, 1) is a type-0 coding vector.

Suppose s sends out W [1] = XcT1 = X1 and W [2] =
XcT2 = X1 + Y , and also suppose that W [1] is received
successfully by d2. Then after d2 receiving W [1], the knowl-
edge space of d2 changes to S2 = span{(1, 0, 0)}. One
can now verify that with the new S2, the coding vector
c2 = (1, 0, 1) becomes a type-9 (type-0001001) vector instead
of type-0. As a result, the the actual/effective coding types
become (TYPE18,TYPE9), which deviate from the intended
(TYPE18,TYPE0) combination.

To circumvent this problem, we can either rely on the ideas
of random linear network coding (RLNC) [8], which requires
a sufficiently large q, or design a scheme for small q ≥ 2 at the
cost of higher complexity. In the following, we demonstrate
the RLNC-based solution. The code design for small q ≥ 2 is
relegated in Section VI-C.

An RLNC-based solution: Continue from our previous ex-
ample. When s is interested in sending out a type-0 vector
over W [2], we let s choose c2 uniformly randomly from the
corresponding set

Ω\(A1 ∪A2 ∪ · · · ∪A7) = Ω\(Ω1 ∪ Ω2) (54)

where the linear subspaces A1 to A7 are evaluated based on the
knowledge spaces S1 = S2 = {(0, 0, 0)} in the very beginning
of the transmission. There are (q3 − q2 − q + 1) number of
choices of c2 = (α1, α2, α3) that are in (54) and we pick
the to-be-transmitted c2 uniformly randomly from all those
choices. Let us now consider the same scenario in which d2

has successfully received W [1] = X1 and the new knowledge
space of d2 becomes S2 = span{(1, 0, 0)}. One can easily
verify that out of the (q3 − q2 − q + 1) choices of c2 =
(α1, α2, α3) vectors, (q3−2q2+ q) of them are still of type-0
even when evaluated using the latest knowledge space S2 =
span{(1, 0, 0)}. Only (q2 − 2q + 1) of the choices belong to
some other type-b, b ̸= 0, when evaluated with the latest
S2 = span{(1, 0, 0)}. When a sufficiently large q is used,
with close-to-one probability the intended type-0 vector c2
(evaluated based on the outdated S2) remains a type-0 vector
regardless of the reception status of the first input W [1].

It turns out that for any time t we can use RLNC (i.e.,
choosing the coding vectors ct,m uniformly randomly from
the intended TYPEb) to circumvent the potential knowledge-
space-mismatch problem as long as the following strengthened
rank comparison inequalities hold in the beginning of time t
(or equivalently in the end of time (t− 1).M):

gap
∆
= 7(M − 1) + 1 (55)

Rank(A6)− Rank(A3) > gap (56)
Rank(A7)− Rank(A4) > gap (57)
Rank(Ω)− Rank(A6) > gap (58)
Rank(Ω)− Rank(A7) > gap (59)
Rank(A3) + Rank(A5)− Rank(A1)− Rank(A6) > gap

(60)
Rank(A4) + Rank(A5)− Rank(A2)− Rank(A7) > gap

(61)
Rank(A6) + Rank(A7)− Rank(A5)− Rank(Ω) > gap,

(62)

where (56) to (62) are strengthened versions of the original
inequalities in (37) to (41). The only difference is that (56)
to (62) require12 some rank gap, denoted by gap, between the
left-hand side and the right-hand side of (37) to (41).

The reason why RLNC works whenever (56) to (62) hold
is as follows. Take coding type-23 for example. From the
definition of TYPE23 in (35) and from (49), the number of
coding choices of TYPE23 in the beginning of time t satisfies

(qterm1 − qterm2 − qterm3) ≤ |TYPE23| ≤ qterm1 (63)

where all three terms term1
∆
= Rank(A3 ∩ A5), term2

∆
=

Rank(A3 ∩ A5 ∩ A1), and term3
∆
= Rank(A3 ∩ A5 ∩ A4)

are evaluated in the beginning of time t. Suppose we choose
a coding vector ct,m for the m-th input W [m](t) in the
beginning of time t. In the beginning of the split instant t.m,
the linear sub-spaces A1 to A7 may have already evolved due
to the reception status of the previous (m − 1) inputs W [1]

to W [m−1]. Therefore, some of the |TYPE23| coding choices
are no longer of type-23. However, one can lower bound the
number of coding choices that remain of type-23 by

|TYPE‡
23| ≥ qterm1 − qterm2† − qterm3†

12One can further reduce the rank gap requirement by analyzing the detailed
evolution of the linear sub-spaces. However, for the purpose of proving the
achievability results, the (relatively loose) rank gap requirements specified in
(55) to (62) are sufficient.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 12

where |TYPE‡
23| is the number of original type-23 coding

vectors (when evaluated in the beginning of time t) that are
still of type-23 in the beginning of split time instant t.m;
term1 is identical to the one defined in (63); term2†

∆
=

Rank(A3 ∩ A5 ∩ A1) and term3†
∆
= Rank(A3 ∩ A5 ∩ A4)

are now evaluated in the beginning of the split time instant
t.m. As a result, the probability that a randomly chosen type-
23 coding vector ct,m in the beginning of time t remains of
type-23 for the split time instant t.m is lower bounded by

|TYPE‡
23|

|TYPE23|
≥ qterm1 − qterm2† − qterm3†

qterm1
.

Hence, as long as term1 > max(term2†, term3†), then for
sufficiently large q, it is guaranteed that with close-to-one
probability the coding type chosen in the beginning of time t
is indeed the actual coding type for the split time instant t.m.

In the following, we prove that term1 > term2† if (55)
to (62) are satisfied in the beginning of time t. The proof of
term1 > term3† follows similarly.

By (51), we have

term1− term2

= Rank(A3) + Rank(A5)− Rank(A1)− Rank(A6)

where A3, A5, A1, and A6 are evaluated in the beginning of
time t. By (60), we thus have (term1−term2) > 7(M−1)+1.
By Lemma 10 in Appendix H, we have 0 ≤ term2†−term2 ≤
3(M − 1). Jointly, we thus have (term1− term2†) > 4(M −
1) + 1. The proof of term1 > term2† is complete.

We can repeat the above proof of the case of TYPE23 for all
other 17 different TYPEb. As a result, we have proven that
RLNC circumvents the potential knowledge-space-mismatch
problem as long as (55) to (62) hold in the beginning of the
given time slot t.

Note that the above statement is a sufficient condition at
time t, under which we can use RLNC to circumvent the need
of having a genie updating the knowledge spaces for each split
time instant t.m. The final step of completing the proof is to
see whether we can satisfy (55) to (62) for all t = 1 to n.
Unfortunately, even though it is possible to satisfy (55) to (62)
for some t ∈ {1, · · · , n}, it is impossible to satisfy (55) to (62)
for all t = 1 to n. On the other hand, if we revisit the tunneling
scheme described in Sections V-D and V-E, we can see that the
key to the success of the tunneling approach is to ensure that
for a majority of the overall duration n−O(ϵn), the trajectory
of the normalized relative frequency {X [m]

b (t) : ∀b,m} is
kept within the proper tunnel connecting x⃗start and x⃗end. Since
a proper tunnel is within the interior of the polytope Γ, it
means that the nature of the tunneling approach automatically
ensures that the gaps between the left-hand side and right-hand
side of the rank comparison equalities (23) to (27) are strictly
positive for the trajectory of the normalized relative frequency.
This in turn implies that the gaps for the raw, unnormalized
rank inequalities (37) to (41) are linearly proportional to n.
Since the minimum gap requirement gap = 7(M − 1)+ 1 for
(56) to (62) is independent of the n value, the nature of the
tunneling approach ensures that we can use RLNC to circum-
vent the knowledge-space-mismatch problem during the entire

tunneling phase (Phase 2). We also note that it is not possible
to satisfy (56) to (62) for every time instant of Phases 1 and 3.
Therefore, the throughput during Phases 1 and 3 still suffers
from the knowledge-space mismatch problem. On the other
hand, any performance degradation during Phases 1 and 3
is negligible from a long-term throughput perspective. We
have thus proven that the combination of RLNC and the
tunneling approach asymptotically achieves any (R1, R2) in
the interior of the capacity region described in Proposition 1.
The achievability proof for the case of general M values is
complete when assuming sufficiently large GF(q).

C. Code Design for GF(q) with Small q

Even for small GF(q), we can still achieve the same effects
of RLNC with proper network code design. To that end,
we first observe that the main feature of the RLNC-based
solution is that we first upper bound the largest possible “rank
mismatch” due to the outdated feedback. Then as long as the
original “rank discrepancy” in the beginning of time t.1, see
(56) to (62), is larger than the potential rank mismatch through
t.1 to t.M , we can blindly (randomly) choose the coding
vector from a given type b. The use of large GF(q) will ensure
that the coding vector will remain in the same TYPEb with
high probability even with the knowledge space mismatch.
The main idea when encoding over small GF(q) is that the
encoder can no longer choose the coding vectors randomly.
Instead, the encoder has to anticipate the possible changes
of the knowledge spaces and perform encoding based on the
worst case scenario. We again use type-23 to demonstrate this
difference.

Suppose we would like to send a type-23 coding vector
ct,m over the m-th input at time t. For k = 1 to 7, we use
Ak to denote the linear subspace evaluated by the outdated
knowledge spaces at time (t − 1).M and use A†

k to denote
the linear subspace evaluated by the latest knowledge spaces
at time t.(m−1). By (35), our goal is to choose a ct,m in the
beginning of time t.1 from the following set

TYPE†
23 = (A†

3 ∩A†
5)\(A

†
1 ∪A†

4)

= (A†
3 ∩A†

5)\((A
†
1 ∩A†

3 ∩A†
5) ∪ (A†

3 ∩A†
4 ∩A†

5)).

However, TYPE†
23 is unknown in the beginning of time t.1.

To circumvent this challenge, we construct a TYPE‡
23, which

is guaranteed to be a subset of TYPE†
23 regardless of the

reception status of the split time instants t.1 to t.(m− 1). As
long as TYPE‡

23 can be explicitly computed in the beginning of
time t.1 and is non-empty, we can choose ct,m from TYPE‡

23

and ct,m will always be of type-23 regardless of the reception
status of the split time instants t.1 to t.(m− 1).

The set TYPE‡
23 is constructed as follows.

TYPE‡
23

∆
= (A3 ∩A5)\((A‡

1 ∩A‡
3 ∩A‡

5) ∪ (A‡
3 ∩A‡

4 ∩A‡
5)),
(64)

where Ak, by definition, is based on the outdated information
and is thus guaranteed to a subspace of A†

k for all k. We
construct A‡

k by (i) assuming all ct,1 to ct,m−1 have been
received successfully by both d1 and d2; (ii) Computing the

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 13

anticipated knowledge spaces S‡
1 and S‡

2 based on this overly
optimistic assumption; and (iii) Computing A‡

k based on S‡
1

and S‡
2 . Since we optimistically assume that all ct,1 to ct,m−1

have been received successfully by both d1 and d2, we must
have S‡

i ⊇ S†
i , where S†

i is the actual knowledge space in the
beginning of time t.m. By (31) to (33), we have A‡

k ⊇ A†
k for

k = 1 to 7. By the above arguments, TYPE‡
23 in (64) can be

computed in the beginning of time t.1 and is guaranteed to be
a subset of TYPE†

23.
To complete the proof, we need to prove that TYPE‡

23

is non-empty. This can be done by assuming (56) to (62)
are satisfied and by quantifying the maximum rank increase
in a similar way as in the RLNC-based analysis, also see
Lemma 10 in Appendix H. The above construction shows that
we can send a type-23 coding vector ct,m over the m-th input
at time t even when we do not know the knowledge spaces in
the beginning of the split time instant t.m. The achievability
proof for the case of general M values is thus complete for
any GF(q) including the binary field GF(2).

An illustrative example of how the tunneling approach
works for the setting of general M values is provided in the
next section.

Astute readers may notice that the previous M = 1
construction in Section V-D requires GF(q) with q ≥ 3 but
the proof for the general M in this subsection holds for any
GF(q) with q ≥ 2. The reason is as follows. If we plug
in M = 1 to the strengthened rank comparison inequalities
(55) to (62), we will not only have the inequalities (37) to
(41) being strict, but the “rank discrepancy” is at least 2.
Compared to the discussion in Section V-D that only assumes
that the rank discrepancy is strictly positive (at least 1), this
additional rank discrepancy requirement allows us to further
sharpen the connection between the “rank-based comparison”
and the “linear space size comparison” for binary field GF(2).

Take TYPE3 for example. In Appendix G, it has been shown
that TYPE3 ̸= ∅ if

qRank(A6∩A7)

> qRank(A3∩A7) + qRank(A4∩A6) + qRank(A5) − 2, (65)

and the following equalities are also proven:

Rank(A6 ∩A7)− Rank(A3 ∩A7)

= Rank(A6)− Rank(A3) (66)
Rank(A6 ∩A7)− Rank(A4 ∩A6)

= Rank(A7)− Rank(A4) (67)
Rank(A6 ∩A7)− Rank(A5)

= Rank(A6) + Rank(A7)− Rank(Ω)− Rank(A5).
(68)

Therefore, if q ≥ 3 and all the above rate discrepancy (66)–
(68) are strictly positive (at least 1), then (65) holds. Here
we observe that if q ≥ 2 and all the above rate discrepancy
(66)–(68) are at least 2, then (65) holds again. The use of a
larger gap in (56)–(62) allows us to generalize the previous
tunneling-based construction to GF(2).

D. Reducing From 18M Types to 7M Types

Lemma 4 implies that when computing for the capacity-
achieving target frequency {ẍ[1]

b : ∀b}, 11M out of the 18M
coordinates can be hardwired to 0 and only 7M of them needs
to be carefully chosen so that they satisfy the LP problem
in Proposition 1. This observation not only reduces the com-
plexity of computing the terminal point ⃗̈x of the tunneling
approach, it also means that to achieve the capacity we only
need to use 7M coding types. Lemma 4 can thus be interpreted
as statement that coding types {0, 9, 18, 27, 31, 63, 95} jointly
dominate all feasible coding types ∀b ∈ FTs for any given
underlying channel parameters.

VII. EXAMPLES AND OTHER IMPLICATIONS OF
PROPOSITION 1

We first provide an illustrative example about the tunneling
approach for general M -input 2-receiver broadcast PECs. We
later discuss the implications of Proposition 1 on broadcast
PEC with observable/controllable channel states.

A. An Illustrative Example — A Macroscopic View

Consider the same 2-input, 2-receiver, cross-input inde-
pendent, broadcast PEC setting as was first discussed in
Section III-C. That is, the per-input reception probabilities
satisfy (13). One can verify that for this setting the rate vector
(R1, R2) = (0.875, 0.96) is strictly outside the improved
simple inner bound in Lemma 3. At the same time, one can
also verify that (R1, R2) = (0.875, 0.96) is within the capacity
region described in Proposition 1 by choosing

x
[1]
31 = 0.125, x

[1]
27 = 0.21, x

[1]
18 = 0.665, x

[2]
9 = 0.78125,

x
[2]
0 = 0.21875, and all other x[m]

b values being 0. (69)

The above assignment of {x[m]
b : ∀b,m} shows that to achieve

the rates (R1, R2) = (0.875, 0.96), we only need to choose
coding vectors of 5 different types b = 31, 27, 18, 9, and 0.
Furthermore, coding types b = 31, 27, and 18 should be sent
exclusively along the first input W [1] and coding types b = 9
and 0 should be sent exclusively along the second input W [2].
For illustration purposes, let us ignore the initial and the final
phases (Phases 1 and 3) of the tunneling approach and focus
on Phase 2, the main body of our network code construction.

When implementing the tunneling approach, in the begin-
ning of every time t we first update the knowledge spaces
S1 and S2 based on what d1 and d2 have heard in the past.
Then we select one coding type b1 from {31, 27, 18} and
one coding type b2 from {9, 0}; choose a coding vector c1
uniformly randomly from TYPEb1

and choose a coding vector
c2 uniformly randomly from TYPEb2 . Then two symbols are
generated by W[1] = X · cT1 and W[2] = X · cT2 and sent
out through the two inputs of the broadcast PEC, respectively.
The selection of b1 and b2 can be fully correlated or fully un-
correlated. Any coding type selection mechanism can achieve
the same target rate (R1, R2) = (0.875, 0.96) as long as the
relative frequency of the coding types stays closely to the pre-
determined assignment in (69), i.e., {X [m]

b (t) : ∀b,m} stays
within the tunnel for all t. In Section V-E, a zig-zag way

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 14

of selecting the coding types are introduced, which facilitates
analysis. For practical applications, for any m ∈ {1, · · · ,M}
one can simply choose bm randomly and independently using
the predetermined variable values x

[m]
b as the probability

mass function. The law of large numbers will ensure that
{X [m]

b (t) : ∀b,m} stays within the tunnel and the long-
term frequency in the end matches the predetermined variable
values x

[m]
b .

B. An Illustrative Example — A Microscopic View

The previous subsection focuses on the high-level macro-
scopic perspective13 of the new solution. For comparison, this
subsection focuses on the per-packet behavior of the new
framework.

We continue the example in Section VII-A. In addition to
M = 2 and the channel statistics specified previously, we
further assume that nR1 = 2 and nR2 = 2. That is, we have
two symbols X1 and X2 for d1 and two symbols Y1 and Y2 for
d2. The overall message space is Ω = (GF(q))4 and the indi-
vidual message spaces are Ω1 = span{(1, 0, 0, 0), (0, 1, 0, 0)}
and Ω2 = span{(0, 0, 1, 0), (0, 0, 0, 1)}.

Consider the beginning of time 1. Since neither d1 nor
d2 has received anything in the past, we have S1 =

{(0, 0, 0, 0)} = S2. From the assignment x
[m]
b in (69), we

know that we can send a coding vector of type-18 (type-
0010010) for W [1]. One can verify that c1 = (1, 0, 0, 0) is
of type-18 and thus can be used for W [1]. Since XcT1 = X1,
sending this type-18 coding vector c1 is equivalent to sending
the session-1 packet X1 uncodedly. Suppose W [1] = X1 is
received by d2 but not by d1. In the end of the split time
instant14 1.1, the knowledge space of d2 becomes S2 =

span{(1, 0, 0, 0)}. From the assignment x[m]
b in (69), we know

that we can send a coding vector of type-9 (type-0001001) for
W [2]. One can verify that c2 = (0, 0, 1, 0) is of type-9 and thus
can be used for W [2]. Since XcT2 = Y1, sending this type-9
coding vector c2 is equivalent to sending the session-2 packet
Y1 uncodedly. Suppose W [2] = Y1 is received by d1 but not
by d2. In the end of the split time instant 1.2, the knowledge
space of d1 becomes S1 = span{(0, 0, 1, 0)}.

We now consider the beginning of time 2. From the
assignment x

[m]
b in (69), we know that we can send a

coding vector of type-31 (type-0011111) for W [1]. Given
S1 = span{(0, 0, 1, 0)} and S2 = span{(1, 0, 0, 0)}, one such
choice of type-31 coding vectors is c1 = (1, 0, 1, 0). Since
XcT1 = X1 + Y1, sending this type-31 coding vector c1 is
equivalent to sending the linear sum of X1 and Y1.

From the above observation, one can see that the existing
LNC solution [7], [10] that sends (i) uncoded session-1 pack-
ets; (ii) uncoded session-2 packets; and (iii) linear combination
of the overheard packets is equivalent to sending (i) type-18
coding vectors; (ii) type-9 coding vectors; and (iii) type-31
coding vectors, respectively.

13This is sometimes termed the flow perspective of network coding.
14We use the genie-aided transmission model herein so that we do not need

to deal with the coding-type-mismatch problem elaborated in Section VI-B
when discussing this illustrative example.

The reason why the achievability scheme in Proposition 1
strictly outperforms the achievability scheme in Lemma 3 in
this example is due to the fact that the optimal solution in (69)
is allowed to use two other coding types TYPE27 and TYPE0,
which are previously not considered in the existing results [6],
[7], [10], [15].

To see why coding types TYPE27 and TYPE0 can increase
the throughput, we continue our discussion about this illustra-
tive example. Suppose that for t = 2, we choose a type-31
coding vector c1 = (1, 0, 1, 0) for W [1]. This vector serves
both destinations d1 and d2 simultaneously. Also suppose that
c1 = (1, 0, 1, 0) is received by d1 but not by d2. d1 can decode
the desired X1 packet by subtracting the overheard Y1 from
the linear sum [X1 + Y1]. On the other hand, it also means
that after the split time instant 2.1, there is no other way of
sending a linear combination of packets that can benefit both
d1 and d2 simultaneously since the “coding opportunity X1”
has been used up after d1 hears [X1+Y1] and decodes X1. In
the following, we will see how the situation can change if we
allow the use of type-27 and type-0 coding vectors in addition
to the existing types 18, 9, and 31.

Let us term the above network code construction code1 and
we will design a new network code code2 from scratch. The
difference between them is that code1 uses only types 18, 9,
and 31, while code2 will use other coding types TYPE27 and
TYPE0 as well. For illustration, In time t = 1, code2 chooses
to send c1 = (1, 0, 0, 0), a type-18 coding vector for W [1].
Also we assume W [1] = X1 is received by d2 but not by d1.
In the end of the split time instant 1.1, the knowledge space
of d2 becomes S2 = span{(1, 0, 0, 0)}. Thus far the coding
choice of code2 is identical to that of code1. We use Table II
to summarize the comparison between code1 and code2.

Suppose for the split time instant 1.2, code2 chooses to send
a coding vector c2 of type-0 (type-0000000) for W [2]. One can
verify that c2 = (1, 1, 1, 1) is of type-0 and the second input
is thus W [2] = X1+X2+Y1+Y2. Similar to the discussion of
code1, we assume that W [2] = X1+X2+Y1+Y2 is received
by d1 but not by d2. In the end of the split time instant 1.2,
the knowledge space of d1 becomes S1 = span{(1, 1, 1, 1)}.
Note that thus far there is no significant difference between
code1 and code2 even though code2 substitutes the type-9
coding vector by a type-0 coding vector for W [2]. Specifically,
in the end of time 1, neither d1 nor d2 has received any
desired packets, and both d1 and d2 have overheard one packet
that could potentially benefit the future coding operations. See
Table II for the summary of the split time instants 1.1 and 1.2.

We now consider the beginning of time 2. Suppose that
code2 chooses to send a coding vector of type-27 (type-
0011011) for W [1]. Given S1 = span{(1, 1, 1, 1)} and S2 =
span{(1, 0, 0, 0)}, one such choice of type-27 coding vectors
is c1 = (1, 0, 1, 1). We now argue that code2 sending XcT1 =
X1+Y1+Y2 can also benefit two destinations simultaneously
in a similar way as code1 sending [X1+Y1]. Specifically, since
d1 has heard [X1 + X2 + Y1 + Y2] in the split time instant
1.2, upon the reception of [X1 + Y1 + Y2], d1 can decode
the desired packet X2. Since d2 has received X1 in the split
time instant 1.1, upon the reception of [X1+Y1+Y2], d2 can
decode [Y1+Y2], which is a linear combination of the desired

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 15

TABLE II
COMPARISON OF THE PER-PACKET BEHAVIOR OF code1 AND code2.

code1 Split time instant 1.1 Split time instant 2.1

Input 1

Choose type-18 (type-0010010); Received by d2 only; Choose type-31 (type-0011111); Received by d1 only;
c1 = (1, 0, 0, 0); S1 = {(0, 0, 0, 0)}; c1 = (1, 0, 1, 0); S1 = span{(0, 0, 1, 0), (1, 0, 1, 0)};
W [1] = X1. S2 = span{(1, 0, 0, 0)}; W [1] = X1 + Y1; S2 = span{(1, 0, 0, 0)};

Decoded pkts: d1 : ∅, d2 : ∅. (Benefit both d1 and d2). Decoded pkts: d1 : {X1}, d2 : ∅.
Split time instant 1.2 Split time instant 2.2

Input 2

Choose type-9 (type-0001001); Received by d1 only; No choice of c2 can benefit both d1 and d2 simultaneously.
c2 = (0, 0, 1, 0); S1 = span{(0, 0, 1, 0)};
W [2] = Y1. S2 = span{(1, 0, 0, 0)};

Decoded pkts: d1 : ∅, d2 : ∅.

code2 Split time instant 1.1 Split time instant 2.1

Input 1

Choose type-18 (type-0010010); Received by d2 only; Choose type-27 (type-0011011); Received by d1 only;
c1 = (1, 0, 0, 0); S1 = {(0, 0, 0, 0)}; c1 = (1, 0, 1, 1); S1 = span{(1, 1, 1, 1), (1, 0, 1, 1)};
W [1] = X1. S2 = span{(1, 0, 0, 0)}; W [1] = X1 + Y1 + Y2; S2 = span{(1, 0, 0, 0)};

Decoded pkts: d1 : ∅, d2 : ∅. (Benefit both d1 and d2). Decoded pkts: d1 : {X2}, d2 : ∅.
Split time instant 1.2 Split time instant 2.2

Input 2

Choose type-0 (type-0000000); Received by d1 only; Sending c = (0, 0, 1, 1) can benefit both d1 and d2 simultaneously.
c2 = (1, 1, 1, 1); S1 = span{(1, 1, 1, 1)};
W [2] = X1 +X2 + Y1 + Y2. S2 = span{(1, 0, 0, 0)};

Decoded pkts: d1 : ∅, d2 : ∅.

packets Y1 and Y2. Sending [X1+Y1+Y2] thus benefits both
d1 and d2 simultaneously.

Assume that after sending c1 = (1, 0, 1, 1), d1 success-
fully receives c1 but d2 receives erasure. As discussed, d1
will decode X2 upon the reception of c1. From the above
discussion, one can see that with the same channel realization
for the the first three split time instants 1.1, 1.2, and 2.1, both
code1 and code2 behave identically in the following sense.
Two packets are overheard after the split time instants 1.1
and 1.2, respectively; a linear combination that can serve both
destinations is sent out in the split time instant 2.1; and only
d1 receives the linear combination in time 2.1 and uses it to
decode one of the desired X packets. See Table II for the
summary of the split time instants 1.1, 1.2, and 2.1.

The difference between code1 and code2 becomes apparent
in the beginning of the next split time instant. In particular,
after the split time instant 2.1, code2 can find yet another linear
combination that benefits both destinations simultaneously.
Namely, if code2 chooses to send W = Y1 + Y2, then
upon the reception of W = Y1 + Y2, d1 can decode X1

based on the overheard packets [X1 + X2 + Y1 + Y2] and
[X1+Y1+Y2] and d2 can receive a linear combination of the
desired packets Y1 and Y2. Sending W = Y1+Y2 thus benefits
both d1 and d2 simultaneously. Note that this behavior of
code2 is in sharp contrast with code1 for which no such linear
combination exists after the split time instant 2.1, see Table II.
This example of code2 thus demonstrates the potential benefits
of incorporating types 0 and 27 in the network code design.

Astute readers may notice that when code2 sends the
linear combination c2 = (1, 1, 1, 1) in time 1.2, it actually
loses some (average) throughput when compared to code1
since unlike the uncoded W [2] = Y1 sent by code1, which
could directly benefit d2 if received by d2, the coded packet
W [2] = X1 + X2 + Y1 + Y2 sent by code2 cannot directly
benefit d2. However, if the probability that d2 receives W [2]

is very small, then sending W [2] = X1 +X2 + Y1 + Y2 has
almost zero throughput loss for time 1.2 when compared to

sending W [2] = Y1 since the scenario that W [2] = Y1 directly
benefits d2 (i.e., heard by d2) rarely happens. Recall from our
observation that after the split time instant 2.1, code2 can still
send a linear combination that benefits both d1 and d2 while
code1 cannot. Therefore, sending W [2] = X1 +X2 +Y1 +Y2

at time 1.2 creates additional future coding opportunity that
can strictly enhance the throughput.

The key implication is that when compared to sending
W [2] = Y1 in time 1.2, the immediate throughput loss (at the
current split time instant) and the future throughput gains (after
time 2.1) of sending W [2] = X1+X2+Y1+Y2 in time 1.2 are
decided by the given channel characteristics, particularly the
reception probability of W [2]. Therefore, for some channel
statistics, sending a type-0 vector c2 = (1, 1, 1, 1) can be
more beneficial than sending a type-9 vector c2 = (0, 0, 1, 0)
(sending the uncoded Y1 packet) while for some other channel
statistics, the preference is reversed. For the M = 1 case, one
can prove that the throughput benefits of coding types 18, 9
and 31 dominate that of any other coding type (e.g., TYPE0).
As a result, one can always design a capacity achieving scheme
without using any type-0 coding vectors [7]. However, for the
case of M > 1, the additional diversity of the M different
inputs breaks the dominance relationship and the benefits of
using coding vectors of other types (e.g., TYPE0) start to
emerge under some channel characteristics.

It is worth noting that the central message of Proposition 1 is
not that some coding types are better than the others. Instead,
one main contribution of this work is to show that the benefits
and limitations of each coding type can be decided by the
underlying channel statistics and we can use an LP solver
to dynamically balance the frequency of sending each coding
type so that different coding types can complement each other
and achieve holistically the optimal throughput performance.
The optimality of our results follows from the fact that the
proposed framework has exhaustively considered all possible
coding types and all possible frequency assignment of the

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 16

coding types.

C. LNC Capacity for Broadcast PECs with Partially Marko-
vian and Partially Controllable Channel State and Delayed
Channel Output Feedback

The methodology proposed in Proposition 1 can be readily
extended to more general settings. In this subsection, we
demonstrate how to use the results in this work to characterize
the LNC capacity of broadcast PECs with instantly observ-
able/controllable channel state and delayed channel output
feedback.

Definition 7: Consider an ergodic finite-state Markov chain
{St : ∀t = 1, 2, · · · } with the state space being S and a
sequence of user controllable actions {Actt ∈ A : ∀t =
1, 2, · · · } taken from a finite set A. We say an M -input 2-
receiver broadcast PEC is partially Markovian with respect to
{St : ∀t} and partially controllable with respect to {Actt : ∀t}
if for any given time instant τ , the distribution of the random
reception status rx1 and rx2 depends only on the values of Sτ

and Actτ , but not on the value of τ nor on the values of St,
Actt, and the reception status for all other time instants t ̸= τ .
The above partially Markovian and partially controllable M -
input 2-receiver broadcast PEC can be described by the
reception probability {prx1,rx2|s,a : ∀rx1, rx2, ∀s ∈ S, ∀a ∈ A}
conditioning on the channel state being St = s and the user
controllable action being Actt = a. We can also define cross-
input and cross-receiver independence in a similar way as
in Definitions 1 and 2 except that the independence is now
defined over the conditional distribution prx1,rx2|s,a.

We are interested in finding the largest (R1, R2) such that
an (optimal) LNC scheme can send nR1 and nR2 independent
packets to d1 and d2, respectively, within the total time budget
n. That is, in the beginning of each time t, source s is allowed
to choose a specific action Actt based on the reception status
in the past and on the Markovian channel state in the past and
the present. That is,

Actt = ft,Act([rx1, rx2]
t−1
1 , [Sτ]

t
τ=1).

Then s sends an M -dimensional row vector W(t) by

W(t) = X ·Ct

where the (nR1 + nR2) ×M encoding matrix Ct is chosen
based on all the past reception status [rx1, rx2]

t−1
1 and on the

Markovian channel state in the past and the present [Sτ]
t
τ=1.

Each destination di decodes its desired packets Xi in the end
of time n,

X̂i = gi([Zi]
n
1 , [Ct]

n
t=1)

based on what it has received in the past, [Zi]
n
1 , and on

knowing how each coded packet is generated.
We can then define the LNC capacity region of the

M -input 2-receiver broadcast PECs with instantly observ-
able/controllable channel state and delayed channel output
feedback in a similar way as in Definitions 3 and 4.

For notational simplicity, we use p
[m]
a1a2|s,a to denote the

reception probabilities for the m-th symbol W [m] given the
channel state being s and the user action being a, where each

bit ai being 1 or 0 indicates whether di receives W [m] or not,
respectively.

Remark: This partially Markovian and partially controllable
M -input 2-receiver broadcast PEC is a strict generalization
of the setting in Section II and it closely captures many im-
portant practical applications. For example, consider a setting
of cognitive radio. When an external source is transmitting,
the packet erasure probability is higher due to the presence
of stronger interference. When the external source is silent,
the packet erasure probability is lower due to better channel
quality. The activity of the external source can now be modeled
by the Markovian state St. Another example is the classic
Gilbert-Elliott channel model for burst erasures, which is a
special example of the above Markovian setting.

The user controllable action Actt also provides another
important degree of freedom when optimizing the system
throughput. For example, source s may choose different coding
and modulation schemes for each time t. Suppose two choices
are possible, i.e., A = {1, 2}. The first coding and modulation
scheme (when choosing Actt = 1) has lower transmission
rate (bit per second) but higher probability of arriving at
the destinations successfully while the second coding and
modulation scheme (when choosing Actt = 2) has higher
transmission rate but lower probability of arriving at the
destinations successfully. To simplify our discussion of this
example, assume that the channel state St is always constant.
The above scenario can now be modeled by choosing M = 2
and setting

p
[1]
00|a=1 = 0.04, p

[1]
10|a=1 = p

[1]
01|a=1 = 0.16, p

[1]
11|a=1 = 0.64;

p
[2]
00|a=1 = 1, p

[2]
01|a=1 = p

[2]
10|a=1 = p

[2]
11|a=1 = 0;

p
[1]
00|a=2 = p

[1]
01|a=2 = p

[1]
10|a=2 = p

[1]
11|a=2 = 0.25;

p
[2]
00|a=2 = p

[2]
01|a=2 = p

[2]
10|a=2 = p

[2]
11|a=2 = 0.25;

where for notational simplicity we omit the subscript that
conditions on the constant channel state St. The above assign-
ment of p[m]

a1a2|a implies that when Actt = 1, one can transmit
only one packet through W [1] since any packet sent through
W [2] is always erased p

[2]
00|a=1 = 1. This models the lower

transmission rate of Actt = 1. Conditioning on Actt = 1, the
probability that each destination successfully receives W [1] is
0.8. On the other hand, when Actt = 2 one can transmit two
packets through W [1] and W [2] simultaneously, which models
the higher transmission rate of Actt = 2. On the other hand,
the probability of each destination successfully receives W [i]

is 0.5 when Actt = 2, which is lower than the case when
Actt = 1. The above assignment of p

[m]
a1a2|a thus models the

throughput and reliability tradeoff when we are allowed to
dynamically change the coding and modulation schemes. The
user controllable action Actt also has the flavor of “network
scheduling,” which is commonly considered in the networking
society.

The LNC capacity of the partially Markovian and partially
controllable broadcast PEC is described as follows.

Proposition 3: For any fixed GF(q), consider any cross-
input independent, partially Markovian and partially con-
trollable M -input 2-receiver broadcast PEC. A rate vector

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 17

(R1, R2) is in the LNC capacity region if and only if there
exist |S| · |A| non-negative variables ts,a for all s ∈ S and
a ∈ A; 18M · |S| · |A| non-negative variables x

[m,s,a]
b for all

b ∈ FTs, m ∈ {1, · · · ,M}, s ∈ S , and a ∈ A; and 7 non-
negative variables y1 to y7 such that jointly they satisfy the
following 4 groups of linear conditions:
• Group 1, termed the time-sharing conditions, has |S|+M ·
|S| · |A| equalities:

∀s ∈ S,
∑
∀a∈A

ts,a = πs

∀m,∀s ∈ S, ∀a ∈ A,

(∑
∀b∈FTs

x
[m,s,a]
b

)
≤ ts,a

where {πs : ∀s ∈ S} is the steady-state distribution of the
Markov chain St.
• Group 2, termed the rank-conversion conditions, has 7
equalities:

y1 =
∑
m,s,a

(∑
∀b∈FTs and b1=0

x
[m,s,a]
b

)
·
(
p
[m]
10|s,a + p

[m]
11|s,a

)
y2 =

∑
m,s,a

(∑
∀b∈FTs and b2=0

x
[m,s,a]
b

)
·
(
p
[m]
01|s,a + p

[m]
11|s,a

)
y3 = R1 +

∑
m,s,a

(∑
∀b∈FTs and b3=0

x
[m,s,a]
b

)(
p
[m]
10|s,a + p

[m]
11|s,a

)
y4 = R2 +

∑
m,s,a

(∑
∀b∈FTs and b4=0

x
[m,s,a]
b

)(
p
[m]
01|s,a + p

[m]
11|s,a

)
y5 =

∑
m,s,a

(∑
∀b∈FTs and b5=0

x
[m,s,a]
b

)
·
(
p
[m]
10|s,a + p

[m]
01|s,a + p

[m]
11|s,a

)
y6 = R1 +

∑
m,s,a

(∑
∀b∈FTs and b6=0

x
[m,s,a]
b

)
·
(
p
[m]
10|s,a + p

[m]
01|s,a + p

[m]
11|s,a

)
y7 = R2 +

∑
m,s,a

(∑
∀b∈FTs and b7=0

x
[m,s,a]
b

)
·
(
p
[m]
10|s,a + p

[m]
01|s,a + p

[m]
11|s,a

)
where the summation

∑
m,s,a is shorthand for

∑
∀m,∀s∈S,∀a∈A

• Group 3, termed the rank-comparison conditions, has 7
inequalities that are identical to (23) to (27).
• Group 4, termed the decodability conditions, has 2 equalities
that are identical to (28).

Proof of Proposition 3: Most definitions of this proof
have been defined in Sections V and VI.

The “Only If” direction: Fix any given linear network code
such that di can decode all Xi,1 to Xi,nRi in the end of time n
for all i = 1, 2 with close-to-one probability. We can construct

the ts,a, x[m,s,a]
b , y1 to y7 variables as follows.

ts,a
∆
=

1

n
E

{
n∑

t=1

1{St=s,Actt=a}

}
(70)

x
[m,s,a]
b

∆
=

1

n
E

{
n∑

t=1

1{St=s,Actt=a,ct,m for W [m] is of type b.}

}
(71)

yk
∆
=

1

n
E {Rank(Ak(n))} . (72)

For (71), the coding type b is evaluated in the beginning of
the split time instant t.m.

We can then follow the same analysis as in Sections V
and VI and prove that the variables assignment in (70) to (72)
satisfy all four groups of conditions in Proposition 3.

The “If” direction: For any (R1, R2) in the interior of the
LNC capacity region described in Proposition 3, consider the
corresponding ts,a, x[m,s,a]

b , and yk values as fixed constants
in the subsequent discussion. An achievability scheme can
then be constructed based on the tunneling approach discussed
in Sections V-D, V-E, and VI. That is, Phase 1 lasts for
a negligible O(ϵn) number of time slots, which focuses on
attaining the relative frequency x⃗start that is in the interior
of the (18M · |S| · |A|)-dimensional polytope Γ and satisfies
d(0⃗, x⃗start) < ϵ. For Phase 2, the main body of the scheme, we
will use the tunneling approach to ensure that the trajectory
goes from x⃗start to x⃗end where x⃗end is in the interior of Γ and
is very close to the target relative frequency {x[m,s,a]

b }, i.e.,
d(x⃗end, {x[m,s,a]

b }) < ϵ. Phase 3 lasts for a negligible O(ϵn)
number of time slots, which focuses on attaining the target
relative frequency {x[m,s,a]

b }. The detailed implementation of
Phases 1 and 3 follows almost identically to the discussion in
Appendix F. We now focus on Phase 2, the main body of the
tunneling approach.

For any time t in Phase 2, if the channel state St = s,
then we choose the action Actt independently randomly ac-
cordingly to the probability mass function

{
ts,a
πs

: ∀a ∈ A
}

.
Then for the m-th input, we choose a coding type b indepen-
dently randomly accordingly to the probability mass function{

x
[m,s,a]
b

ts,a
: ∀b ∈ FTs

}
. Once a coding type b is selected, we

choose independently and uniformly randomly a coding vector
c from TYPEb and use such c to encode the m-th input W [m].
Such an approach guarantees that the long-term frequency of
choosing coding type b for the m-th input when counting only
the time instants with St = s and Actt = a converges to the
given assignment x[m,s,a]

b . By the tunneling approach and the
corresponding analysis in Sections V and VI, it is guaranteed
that the proposed scheme achieves the target rates (R1, R2).

VIII. CONCLUSION

This work has characterized the full LNC capacity of the
cross-input independent M -input 2-receiver broadcast PECs
with channel output feedback. A new linear-space-based con-
structive approach has been proposed, which uses an LP
solver to exhaustively search for the LNC scheme(s) with

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 18

best possible throughput. The resulting LNC scheme is thus
guaranteed to attain the LNC capacity. We have then used
pure algebraic arguments to show that the LNC capacity
matches a simple capacity outer bound and is thus the true
capacity region. A byproduct of the above results is a complete
LNC capacity region characterization for 2-receiver partially
Markovian and partially controllable broadcast PECs.

One future direction is to generalize the results for an
arbitrary number of receivers. The main challenge for the
generalization is that the achievability results no longer hold
since for the case of ≥ 3 receivers, whether a feasible coding
type is empty or not cannot be determined solely by checking
the rank inequalities as was the case of 2 receivers, see Table I.
We believe an even deeper understanding of the linear network
code structure is necessary for the case of ≥ 3 receivers.

APPENDIX A
PROOF OF LEMMA 3

We prove this lemma by explicit construction similar to the
ideas in [7], [10].

The main idea of the optimal LNC schemes in [7], [10] is
the following. Source s first sends each flow-1 packet Xk,
k = 1 to nR1, uncodedly until it is received by at least
one of the users d1 and d2. Then source s sends each flow-
2 packet Yl, l = 1 to nR2, uncodedly until it is received
by at least one of d1 and d2. After finishing sending all Xk

and Yl uncodedly, we examine the reception status of each
Xk and Yl. If a Xk is received by the intended destination
d1, then no further transmission is necessary for such Xk.
If not, it means that such Xk is received by d2 but not by
d1, which is a good candidate for future LNC operations.
Symmetrically, there is no need to send those Yl that have
been received by its intended destination d2. All the other Yl

are received by d1 but not by d2, which are good candidates for
future LNC operations. As a result, after sending Xk and Yl

uncodedly, source s simply sends linear sums of Xk and Yl

that combine those “overheard-by-the-other-destination” Xk

and Yl. The following scheme is based on the above simple
LNC construction.

In the following, we first provide the so-called first-order
analysis for the achievability of a linear network coding solu-
tion. After presenting the first-order analysis, we then provide
details how to use the law of large numbers to derive a rigorous
proof from the first-order analysis. One can see that although
the application of the law of large numbers is straightforward,
the corresponding (ϵ, δ)-language substantially lengthens the
overall proof and makes the overall logic flow less intuitive.
Since the achievability proofs in Sections V-D, V-E, and VI-B
are quite long and involve many new concepts even when using
the first-order analysis, for those proofs we omit the detailed
application of the law of large numbers. The interested readers
should be able to follow the spirit of the second half of this
appendix section and derive rigorous proofs by themselves.
Also see the discussion in the subsection Appendix A-C.

A. The First-Order Analysis

Given any R1, R2, R
[m]
1 , R

[m]
2 variables satisfying (9) to

(12), we first divide the nRi packets among the M inputs

by nR
[1]
i to nR

[M]
i for i = 1, 2, and send the nR

[m]
i packets

uncodedly through the m-th input until each one is received by
at least one of d1 and d2. These two steps are always feasible
since (9) and (10) are satisfied.

After sending packets uncodedly, we examine the reception
status. Totally, the following number of flow-i packets have
been received correctly by di

M∑
m=1

nR
[m]
i

(
p
[m]
11 + 1{i=1}p

[m]
10 + 1{i=2}p

[m]
01

p
[m]
01 + p

[m]
10 + p

[m]
11

)
and the remaining

M∑
m=1

nR
[m]
i

(
1{i=1}p

[m]
01 + 1{i=2}p

[m]
10

p
[m]
01 + p

[m]
10 + p

[m]
11

)
. (73)

packets have been heard by the other destination dj , j ̸= i,
but not by di. (73) corresponds to the number of all the newly
created network coding opportunities [7], [10], [12].

The next step is to redistribute the coding opportunities
among all M inputs, and use the remaining time slots (of
each of the M sub-channels) to send the packets that have not
arrived at their intended destinations by LNC. To analyze this
step, we notice that the m-th sub-channel has

n

(
1− R

[m]
1 +R

[m]
2

p
[m]
01 + p

[m]
10 + p

[m]
11

)
(74)

number of time slots left. As a result, we can finish trans-
mission of all the remaining coding opportunities (73) if the
following conditions are satisfied for all i = 1, 2.

(73) <
M∑

m=1

(
(74) ·

(
p
[m]
11 + 1{i=1}p

[m]
10 + 1{i=2}p

[m]
01

))
.

(75)

We then notice that (11) implies (75) for the case of i = 1
and (12) implies (75) for the case of i = 2. As a result, we
can finish the remaining coding opportunities in (73) using
the remaining time slots of each of the M sub-channels. The
above scheme can thus send nRi packets to di within the
allotted n time slots. The proof of Lemma 3 is complete.

Note that all the above statements are made in the sense
of expected values. That is why it is termed the first-order
analysis.

B. Complete Analysis of The Law of Large Numbers

Given any R1, R2, R
[m]
1 , R

[m]
2 variables satisfying (9) to

(12), we first define the following 3M different constants t̄i,m
for i = 1, 2 and t̄C,m for m = 1 to M , respectively.

∀i = 1, 2, t̄i,m
∆
=

R
[m]
i

p
[m]
10 + p

[m]
01 + p

[m]
11

(1 + δ) (76)

and t̄C,m
∆
= 1− t̄1,m − t̄2,m (77)

where δ > 0 is some strictly positive constant. We choose the
value of δ > 0 to be sufficiently small such that the following

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 19

M + 2 inequalities are satisfied simultaneously.

∀m = 1, · · · ,M, t̄C,m > 0, (78)
M∑

m=1

R
[m]
1

(
p
[m]
01

p
[m]
01 + p

[m]
10 + p

[m]
11

)
(1 + δ)

≤
M∑

m=1

t̄C,m(p
[m]
10 + p

[m]
11), (79)

and
M∑

m=1

R
[m]
2

(
p
[m]
10

p
[m]
01 + p

[m]
10 + p

[m]
11

)
(1 + δ)

≤
M∑

m=1

t̄C,m(p
[m]
01 + p

[m]
11). (80)

We first claim that such a δ > 0 can always be found. The
reason is that (10) implies that we can find a small δ > 0 such
that (78) is satisfied. Further, (11) (resp. (12)) implies that we
can find a small δ > 0 such that (79) (resp. (80)) is satisfied.

Once the t̄i,m, t̄C,m, and δ values are decided, we are
ready to describe the network code construction. For any given
network code block length n, the network code contains three
stages. Stage 1: Divide the nR1 packets X1,1 to X1,nR1 among
the M inputs by nR

[1]
1 to nR

[M]
1 , and send the nR

[m]
1 packets

uncodedly through the m-th input until each one is received by
at least one of d1 and d2. We run Stage 1 on the m-th input for
n·t̄1,m time slots. For any m, if all the nR

[m]
1 packets allocated

to the m-th input are heard by at least one of {d1, d2} before
using up the time budget nt̄1,m, then we simply let the m-th
input remain idle until we use up the allocated nt̄1,m time
slots. After using up the time budget nt̄1,m, we proceed to
Stage 2. Before describing Stage 2, we define the following
two types of encoding errors. Note that regardless whether
there is any encoding error, we proceed to Stage 2 anyhow.

Encoding error type 1 for Stage 1: For at least one m value,
there is still one packet, out of the nR

[m]
1 packets assigned to

the m-th input, that has not been heard by any of {d1, d2} in
the end of Stage 1.

Encoding error type 2 for Stage 1: For at least one m value,
out of the total number of nR[m]

1 packets assigned to the m-th
input, the number of packets that have been heard by the other
destination d2 but not by d1 is larger than

nR
[m]
1

(
p
[m]
01

p
[m]
01 + p

[m]
10 + p

[m]
11

)(
1 +

δ

2

)
. (81)

Stage 2 is symmetric to Stage 1. That is, we divide the nR2

packets X2,1 to X2,nR2 among the M inputs and send the
nR

[m]
2 packets uncodedly through the m-th input until each

one is received by at least one of d1 and d2. The allocated
time budget for the m-th input is nt̄2,m. We also define the
encoding error types 1 and 2 for Stage 2:

Encoding error type 1 for Stage 2: For at least one m value,
there is still one packet, out of the nR

[m]
2 packets assigned to

the m-th input, that has not been heard by any of {d1, d2} in
the end of Stage 2.

Encoding error type 2 for Stage 2: For at least one m value,
out of the total number of nR[m]

2 packets assigned to the m-th

input, the number of packets that have been heard by the other
destination d1 but not by d2 is larger than

nR
[m]
2

(
p
[m]
10

p
[m]
01 + p

[m]
10 + p

[m]
11

)(
1 +

δ

2

)
. (82)

Regardless whether there is any encoding error, we proceed
to Stage 3 anyhow.

Stage 3: We first notice that those Xi packets that have
been heard by the other destination dj , j ̸= i, but not by the
intended di correspond to the newly created network coding
opportunities [7], [10], [12]. We relabel those packets as X̃i

∆
=

{X̃i,1, X̃i,2, · · · , X̃i,Li
} where Li represents the total number

of those coding opportunities. The next step is to redistribute
these Li coding opportunities among all M inputs in a way
that is proportional to t̄C,m(1{i=1}p

[m]
10 + 1{i=2}p

[m]
01 + p

[m]
11).

Namely, we find L
[1]
i to L

[M]
i such that

Li =
M∑

m=1

L
[m]
i (83)

L
[m]
i ∝ t̄C,m(1{i=1}p

[m]
10 + 1{i=2}p

[m]
01 + p

[m]
11). (84)

For each input m, we now have L
[m]
1 number of X̃1 packets

that have been heard by d2 but not d1, and L
[m]
2 number of

X̃2 packets that have been heard by d1 but not d2. We denote
those packets by X̃

[m]
1 and X̃

[m]
2 , respectively. In Stage 3, for

the m-th input, we choose one such X̃
[m]
1 packet, denoted by

X̃
[m]
1 , and one such X̃

[m]
2 packet, denoted by X̃

[m]
2 ; and send

the linear sum [X̃
[m]
1 + X̃

[m]
2].

In the end of the current time t, perform the following
procedure for i = 1, 2, respectively. If the linear sum is
received by di, then we remove such X̃

[m]
i from the pool of

X̃
[m]
i packets and choose arbitrarily another X̃

[m]
i from that

pool for the next time slot. If the pool is empty, then we simply
choose X̃

[m]
i = 0 instead. As can be seen, Stage 3 can be

executed indefinitely if there is no time budget constraint, since
Stage 3 allows us to send a linear sum with X̃

[m]
1 = X̃

[m]
2 = 0.

To incorporate the time budget constraint, for each of the m-th
input, we only run Stage 3 for nt̄C,m number of time slots.
We now define the following encoding error for Stage 3.

Encoding error for Stage 3: There exists an m value such
that at least one of the two pools: the X̃

[m]
1 and X̃

[m]
2 packets,

is not empty after running stage 3 on the m-th input for n·t̄C,m
time slots.

We now prove the following claims for the above network
code construction.

Claim 1: We can always finish the above network coding
scheme within the time budget n time slots. Proof: This is a
direct result of (77).

Claim 2: If there is no encoding error in Stages 1 to 3,
then both di, i = 1, 2, can successfully receive/decode all the
desired packets Xi successfully. Proof: Per our construction,
at the end of Stage 1, d1 has received all the X1 packets
except for those in X̃1 since there is no type-1 encoding error
for Stage 1. Since there is no encoding error in Stage 3, d1
can decode all the X̃

[m]
1 packets through the m-th input for

all m = 1 to M by subtracting the X̃2 packets overheard in

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 20

Stage 2. As a result, d1 can receive/decode all X1 packets by
the end of time n. The case for d2 can be proven by symmetry.

Claim 2 implies that the decoding error probability is the
probability that there is an encoding error in one of the three
stages. Note that the above scheme is well defined for arbitrary
n values. To complete the achievability proof, we thus need
to show that for any ϵ > 0, we can find a sufficiently large n
such that the probability of encoding error is less than ϵ.

Given any ϵ > 0, we first notice that the expected number
of time slots to finish sending nR

[m]
i packets over the m-th

input in Stage 1 is nR
[m]
i /(p

[m]
10 + p

[m]
01 + p

[m]
11). By (76) and

the law of large numbers (LLN) there exists an n1,m,type-1
such that when n ≥ n1,m,type-1, the probability that there is
a type-1 encoding error for Stage 1 over the m-th input is
≤ ϵ

6M . We then notice that conditioning on there is no type-
1 encoding error in Stage 1, the expected number of packets

that are heard by d2 but not by d1 is nR[m]
1

(
p
[m]
01

p
[m]
01 +p

[m]
10 +p

[m]
11

)
.

By (81) and the LLN, there exists an n1,m,type-2 such that
when n ≥ n1,m,type-2, the conditional probability that there
is a type-2 encoding error for Stage 1 over the m-th input,
conditioning on the event that there is no type-1 encoding error
in Stage 1, is ≤ ϵ

6M . Symmetrically, there exists an n2,m,type-1
such that when n ≥ n2,m,type-1 the probability that there is
a type-1 encoding error for Stage 2 over the m-th input is
≤ ϵ

6M . Similarly, there exists an n2,m,type-2 such that when
n ≥ n2,m,type-2 the conditional probability that there is a type-
2 encoding error for Stage 2 over the m-th input, conditioning
on the event that there is no type-1 encoding error in Stage 2,
is ≤ ϵ

6M .
We now consider the encoding error in Stage 3. We first

quantify the probability that the X̃
[m]
1 pool is not empty after

running stage 3 on the m-th input for n · t̄C,m time slots. We
notice that conditioning on the event that there is no type-2
encoding error in Stage 1, by (81) we have

L1 ≤
M∑

m=1

nR
[m]
1

(
p
[m]
01

p
[m]
01 + p

[m]
10 + p

[m]
11

)(
1 +

δ

2

)
.

By (79), we have

L1

(
1 + δ

1 + δ/2

)
≤

M∑
m=1

nt̄C,m(p
[m]
10 + p

[m]
11).

By (83) and (84), we then have(
L
[m]
1

p
[m]
10 + p

[m]
11

)(
1 + δ

1 + δ/2

)
≤ nt̄C,m. (85)

We then notice that the expected number of time slots to
finish sending the L

[m]
1 packets over the m-th input in Stage 3

is L
[m]
1 /(p

[m]
10 + p

[m]
11). By (85) and the LLN, there exists an

n1,m,stage-3 such that when n ≥ n1,m,stage-3, the conditional
probability that we are not able to finish sending the L

[m]
1

packets over the m-th input within the allocated nt̄C,m time
slots, conditioning on the event of no type-2 encoding error in
Stage 1, is ≤ ϵ

6M . Symmetrically, there exists an n2,m,stage-3
such that when n ≥ n2,m,stage-3, the conditional probability that

we are not able to finish sending the L
[m]
2 packets over the m-

th input within the allocated nt̄C,m time slots, conditioning on
the event of no type-2 encoding error in Stage 2, is ≤ ϵ

6M .
From the above reasoning, for any

n ≥ max {ni,m,type-1, ni,m,type-2, ni,m,stage-3

: ∀i ∈ {1, 2},m ∈ {1, · · · ,M}}

the probability of having at least one encoding error in Stages
1 to 3 can be upper bounded by the union bound

2M
ϵ

6M
+ 2M

ϵ

6M
+ 2M

ϵ

6M

where the first term corresponds to the type-1, type-2 errors
in Stage 1; the second term corresponds to the type-1, type-2
errors in Stage 2; and the last term corresponds to the encoding
error in Stage 3.

We have thus proven that for any ϵ > 0, the decoding error
probability for the above scheme is no larger than ϵ when n
is sufficiently large. The proof of Lemma 3 is complete.15

C. Remarks on Deriving Complete Proofs Based on The First-
Order Analysis

One can trace the complete proof and see that it follows the
logic flow of the first-order analysis very closely. In general,
the first order analysis can be made rigorous by the LLN as
long as the following is true.

• The normalized time budget constraint, e.g., (10) to (12),
is a strict inequality so that there we can add the δ term,
e.g., (76) and (79)–(82), which is critical for the LLN
analysis.

• The number of “stages” in the design of the network
code must be a finite number not depending on n, the
network code length. For example, there are 3 stages
in the aforementioned network code. In this way, when
we invoke the LLN, the error probability will approaches
zero for a sufficiently large n when we apply the union
bound analysis.

APPENDIX B
PROOFS OF PROPOSITION 2 AND LEMMA 4

Proof of Proposition 2: We prove the following equiv-
alent statement. For any given rate vector (R1, R2) satisfying

15Astute readers may notice that there is one subtlety omitted in the
above argument: It does not consider causality constraints. That is, when we
redistribute the coding opportunities, we implicitly assume that all M inputs
have finished executing Stages 1 and 2 at the same time so that we can collect
all the Li coding opportunities, denoted by X̃i, and redistribute them to all
M inputs simultaneously. This implicit assumption is in general not true.
However, we can circumvent this difficulty by some pipelining techniques.
That is, we consider the (F + 1) number of frames, where F is some large
number. Then we can use the aforementioned network code for F times but
each network code usage is spread over two consecutive frames. Namely,
we always collect the coding opportunities in the first “half” of each frame
and always perform redistribution and linear-sum encoding in the second
“half” of each frame. However, we impose the requirement that the coding
opportunities collected in (the first half of) one frame is always redistributed
and encoded in (the second half of) the next frame. Since we spread the
collection and the consumption of the coding opportunities into two frames,
we circumvent the causality constraint. In the achievability proof of our main
result in Proposition 1, we do not use the concept of redistribution and thus we
do not need any pipelining technique when describing the proposed network
coding solution.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 21

the outer bound of Lemma 2, there exist 18M non-negative
values x

[m]
b for all b ∈ FTs and m = 1, · · · ,M , and 7 non-

negative values y1 to y7 such that jointly they satisfy (15) to
(28) in Proposition 1.

The proof is done by explicit construction that consists of
five main steps.

Step 1: Given the the values of R1, R2, and the R
[m,k]
i

variables satisfying Lemma 2, we will first construct a set
of 9M non-negative variables x

[m]
b for all m ∈ {1, · · · ,M}

and b ∈ {0, 1, 2, 9, 18, 27, 31, 63, 95} satisfying the following
4 + 2M (in)equalities:

R1 =
M∑

m=1

 ∑
∀b∈{18,27,31,63}

x
[m]
b

 · (p[m]
10 + p

[m]
11

)
, (86)

R1 =

M∑
m=1

 ∑
∀b∈{0,2,18}

x
[m]
b

 · (p[m]
10 + p

[m]
01 + p

[m]
11

)
, (87)

R2 =
M∑

m=1

 ∑
∀b∈{0,1,9}

x
[m]
b

 · (p[m]
10 + p

[m]
01 + p

[m]
11

)
, (88)

R2 =

M∑
m=1

 ∑
∀b∈{9,27,31,95}

x
[m]
b

 · (p[m]
01 + p

[m]
11

)
, (89)

and for all m ∈ {1, · · · ,M}

x
[m]
0 + x

[m]
1 + x

[m]
9 + x

[m]
18 + x

[m]
27 + x

[m]
31 + x

[m]
63 ≤ 1, (90)

x
[m]
0 + x

[m]
2 + x

[m]
9 + x

[m]
18 + x

[m]
27 + x

[m]
31 + x

[m]
95 ≤ 1. (91)

Our construction is as follows. For any m ∈ {1, · · · ,M},
we set

x
[m]
63 =

R
[m,1]
1

p
[m]
10 + p

[m]
11

, x
[m]
2 =

R
[m,2]
1

p
[m]
10 + p

[m]
01 + p

[m]
11

,

x
[m]
1 =

R
[m,1]
2

p
[m]
10 + p

[m]
01 + p

[m]
11

, x
[m]
95 =

R
[m,2]
2

p
[m]
01 + p

[m]
11

,

and x
[m]
b = 0 for all other b ∈ {0, 9, 18, 27, 31}. Obviously,

the above construction satisfies

R
[m,1]
1 = (x

[m]
18 + x

[m]
27 + x

[m]
31 + x

[m]
63) · (p[m]

10 + p
[m]
11), (92)

R
[m,2]
1 = (x

[m]
0 + x

[m]
2 + x

[m]
18) · (p[m]

10 + p
[m]
01 + p

[m]
11), (93)

R
[m,1]
2 = (x

[m]
0 + x

[m]
1 + x

[m]
9) · (p[m]

10 + p
[m]
01 + p

[m]
11), (94)

R
[m,2]
2 = (x

[m]
9 + x

[m]
27 + x

[m]
31 + x

[m]
95) · (p[m]

01 + p
[m]
11). (95)

Then (7), (92), and (94) jointly imply (90). Symmetrically,
(8), (93), and (95) jointly imply (91). The inequalities (86)–
(89) are direct results of (6) and (92)–(95).

Step 2: We claim that not only can we find the 9M non-
negative variables x

[m]
b for all m ∈ {1, · · · ,M} and b ∈

{0, 1, 2, 9, 18, 27, 31, 63, 95} satisfying (86) to (91), but the
construction of x[m]

b can also be done in a way that additionally
it satisfies the following 4M conditions as well.

∀m, x
[m]
1 · x[m]

2 = 0, x
[m]
63 · x

[m]
95 = 0,

x
[m]
1 · x[m]

95 = 0, and x
[m]
2 · x[m]

63 = 0.
(96)

The reason is as follows. Suppose that for some m0 ∈
{1, · · · ,M}, we have both x

[m0]
1 and x

[m0]
2 being strictly

positive. Define ∆
∆
= min(x

[m0]
1 , x

[m0]
2) > 0. We then notice

that when setting x
[m0]
0 ← x

[m0]
0 + ∆, x[m0]

1 ← x
[m0]
1 − ∆,

x
[m0]
2 ← x

[m0]
2 − ∆, and keeping the other x

[m]
b intact, all

the newly constructed x
[m]
b are still non-negative. The new

construction obviously satisfies x
[m0]
1 · x[m0]

2 = 0. Moreover,
one can easily verify that (86) to (91) still hold after the above
modification that “moves the weight of x

[m0]
1 (and x

[m0]
2) to

x
[m0]
0 .”
To ensure that at least one of x[m]

63 and x
[m]
95 being zero for

all m, we can perform a similar modification that “moves the
weight of x

[m]
63 (and x

[m]
95) to x

[m]
27 .” Similarly, to ensure that

at least one of x
[m]
1 and x

[m]
95 being zero, we can perform a

modification that moves the weight of x[m]
1 (and x

[m]
95) to x

[m]
9 .

To ensure that at least one of x
[m]
2 and x

[m]
63 being zero, we

can move the weight of x[m]
2 (and x

[m]
63) to x

[m]
18 .

We also observe that jointly (96), (90), and (91) imply that
for all m ∈ {1, · · · ,M},

x
[m]
0 + x

[m]
1 + x

[m]
2 + x

[m]
9 + x

[m]
18

+ x
[m]
27 + x

[m]
31 + x

[m]
63 + x

[m]
95 ≤ 1.

(97)

The reason is that if x
[m]
1 > 0, then by (96) we must have

x
[m]
2 = x

[m]
95 = 0. Therefore, (90) implies (97). Symmetrically,

if x
[m]
2 > 0, then by (96) we must have x

[m]
1 = x

[m]
63 = 0.

Therefore, (91) implies (97). If both x
[m]
1 = x

[m]
2 = 0, then by

(96), at least one of x[m]
63 and x

[m]
95 must be zero. If x[m]

95 = 0,
then (90) implies (97). If x

[m]
63 = 0, then (91) implies (97).

From the above discussion, we can see that (97) always holds
for our construction.

In sum, after Step 2 we have found a set of 9M non-
negative variables x

[m]
b for all m ∈ {1, · · · ,M} and b ∈

{0, 1, 2, 9, 18, 27, 31, 63, 95} satisfying (86)–(89) and (97).
Step 3: We claim that not only can we find the 9M

non-negative variables x
[m]
b for all m ∈ {1, · · · ,M} and

b ∈ {0, 1, 2, 9, 18, 27, 31, 63, 95} satisfying simultaneously
(86)–(89) and (97), but the construction of x

[m]
b can also be

done such that x
[m]
1 = x

[m]
2 = 0 for all m ∈ {1, · · · ,M}.

(Note that in the end result of this step we no longer require
the x

[m]
b variables to satisfy (96).)

The reason is as follows. Suppose that for some m0 ∈
{1, · · · ,M}, we have one of x

[m0]
1 and x

[m0]
2 being strictly

positive. Without loss of generality, we assume x
[m0]
1 = 0

and x
[m0]
2 > 0. We now describe our construction. In our

construction, we decrease x
[m0]
2 by ∆2; increase x

[m0]
18 by ∆18;

decrease each of x
[m]
27 , x

[m]
31 , and x

[m]
63 by ∆

[m]
27 , ∆

[m]
31 , and

∆
[m]
63 for all m ∈ {1, · · · ,M}, respectively; increase x

[m]
95 by

∆
[m]
95 for all m ∈ {1, · · · ,M}, respectively; and keep all the

remaining x
[m]
b variables unchanged. We choose the ∆ values

sequentially as follows.
Choose ∆2 = x

[m0]
2 first. Then choose ∆18 = ∆2. After

that, choose {∆[m]
27 ,∆

[m]
31 ,∆

[m]
63 : ∀m} that satisfy simultane-

ously the following two conditions: (i) 0 ≤ ∆
[m]
b ≤ x

[m]
b for

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 22

all b ∈ {27, 31, 63}; and (ii) the following equality holds

x
[m0]
2 · (p[m0]

10 + p
[m0]
11)

=
M∑

m=1

(
∆

[m]
27 +∆

[m]
31 +∆

[m]
63

)
·
(
p
[m]
10 + p

[m]
11

)
.

(98)

Note that while the choices of ∆2 and ∆18 are strictly
positive, {∆[m]

27 ,∆
[m]
31 ,∆

[m]
63 : ∀m} do not need to be strictly

positive and some of them can be zero. Moreover, the above
choice of {∆[m]

27 ,∆
[m]
31 ,∆

[m]
63 : ∀m} is always feasible although

the choice may not be unique. The reason is as follows. We
notice that since both the left-hand sides of (86) and (87) are
R1, we thus have (87) = (86), which implies

x
[m0]
2 · (p[m0]

10 + p
[m0]
11)

+ x
[m0]
2 · p[m0]

01 +
∑

m ̸=m0

x
[m]
2 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)

+
M∑

m=1

x
[m]
0 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
+

M∑
m=1

x
[m]
18 · p

[m]
01

=
M∑

m=1

(
x
[m]
27 + x

[m]
31 + x

[m]
63

)
·
(
p
[m]
10 + p

[m]
11

)
.

Therefore, we have

x
[m0]
2 · (p[m0]

10 + p
[m0]
11)

≤
M∑

m=1

(
x
[m]
27 + x

[m]
31 + x

[m]
63

)
·
(
p
[m]
10 + p

[m]
11

)
.

(99)

Comparing (98) and (99), it is clear that we can choose
∆

[m]
b in the interval [0, x

[m]
b] for all b ∈ {27, 31, 63} such

that jointly they satisfy (98).
Finally choose ∆

[m]
95 = ∆

[m]
27 + ∆

[m]
31 for all m ∈

{1, · · · ,M}.
We can now verify that (86) still holds due to ∆18 =

∆2 = x
[m0]
2 and (98). (87) still holds due to ∆18 = ∆2. (88)

still holds since we did not change the corresponding x
[m]
b

variables. (89) still holds since ∆
[m]
95 = ∆

[m]
27 + ∆

[m]
31 . (97)

holds since any potential increment is offset by an identical
decrement. More specifically, the increase of x

[m0]
18 is offset

by the decrease of x[m0]
2 , and the increase of x[m]

95 is offset by
the decrease of x

[m]
27 and x

[m]
31 . After the above modification,

we now have x
[m0]
1 = x

[m0]
2 = 0. We can repeat the process

until x[m]
1 = x

[m]
2 = 0 for all m.

Step 4: We claim that not only can we find the 9M

non-negative variables x
[m]
b for all m ∈ {1, · · · ,M} and

b ∈ {0, 1, 2, 9, 18, 27, 31, 63, 95} satisfying simultaneously (i)
x
[m]
1 = x

[m]
2 = 0 for all m; (ii) (86) to (89); and (iii) (97),

but the construction of x
[m]
b can also be done such that the

following equality holds.

M∑
m=1

x
[m]
0 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
=

M∑
m=1

x
[m]
27 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
.

(100)

The proof is as follows. We start from the x
[m]
b variables

satisfying the above Conditions (i) to (iii). Define α and β to
be

α
∆
=

M∑
m=1

x
[m]
0 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
, (101)

β
∆
=

M∑
m=1

x
[m]
27 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
, (102)

where both α and β are non-negative by definition. Consider
the following three cases depending on the order of α and β.

Case 1: α = β. In this case, (100) holds already. No further
modification is necessary.

Case 2: α < β. In this case, for each m with x
[m]
27 > 0,

we can continuously decrease x
[m]
27 and increase x

[m]
31 by the

same amount, i.e., “move the weight from x
[m]
27 to x

[m]
31 .” When

we continuously move the weight from x
[m]
27 to x

[m]
31 , one

can easily see that (86)–(89) and (97) still hold; the α value
remains intact; and the β value decreases continuously. If we
move all the weight from x

[m]
27 to x

[m]
31 for all m ∈ {1, · · ·M},

then the β value decreases to 0 continuously. Therefore,
somewhere along the process, we will have α = β. Whenever
α = β, we stop moving any weight from x

[m]
27 to x

[m]
31 . The

final x[m]
b values satisfy (100).

Case 3: α > β. In this case, for each m when x
[m]
31 > 0, we

can continuously decrease x
[m]
31 and increase x

[m]
27 by the same

amount, i.e., “move the weight from x
[m]
31 to x

[m]
27 .” Note that

moving the weight from x
[m]
31 to x

[m]
27 increase β while all the

equalities (86)–(89) and (97) still hold. If along the process
we have α = β, then no further modification is necessary.
Suppose after moving all the weight of x

[m]
31 to x

[m]
27 we still

have α > β. (That is, now x
[m]
31 = 0 for all m.) In this case, we

need to perform the following further modification on x
[m]
b .

To that end, we define 7 different summations as follows.

sum1
∆
=

M∑
m=1

(
x
[m]
18 + x

[m]
27

)
·
(
p
[m]
10 + p

[m]
11

)
,

sum2
∆
=

M∑
m=1

x
[m]
63 ·

(
p
[m]
10 + p

[m]
11

)
,

sum3
∆
=

M∑
m=1

x
[m]
0 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
, (103)

sum4
∆
=

M∑
m=1

x
[m]
18 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
,

sum5
∆
=

M∑
m=1

x
[m]
9 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
,

sum6
∆
=

M∑
m=1

(
x
[m]
9 + x

[m]
27

)
·
(
p
[m]
01 + p

[m]
11

)
,

sum7
∆
=

M∑
m=1

x
[m]
95 ·

(
p
[m]
01 + p

[m]
11

)
.

Since by our construction we have x
[m]
b = 0 for all b ∈

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 23

{1, 2, 31}, then (86) to (89) can be rewritten as

R1 = sum1 + sum2, (104)
R1 = sum3 + sum4, (105)
R2 = sum3 + sum5,

R2 = sum6 + sum7.

Recall that we are focusing on the case α > β. We claim
that both sum2 and sum7 are strictly positive. The reason is as
follows. We first notice that both the left-hand side of (104)
and (105) are R1. The equality (105) = (104) implies that

sum3 +

M∑
m=1

x
[m]
18 · p

[m]
01

=
M∑

m=1

x
[m]
27 ·

(
p
[m]
10 + p

[m]
11

)
+ sum2.

(106)

By definitions (101) and (103), we have sum3 = α.
Therefore, (106) and the assumption β < α imply

β +

M∑
m=1

x
[m]
18 · p

[m]
01 <

M∑
m=1

x
[m]
27 ·

(
p
[m]
10 + p

[m]
11

)
+ sum2,

⇔
M∑

m=1

(
x
[m]
18 + x

[m]
27

)
· p[m]

01 < sum2, (107)

where “⇔” follows from the definition of β in (102). The
strict inequality (107) shows that sum2 is strictly positive.
By symmetric arguments, one can show that sum7 is strictly
positive provided α > β.

In the following modification process, we will continuously
decrease the value of α while keeping the value of β intact
until we finally have α = β. After α = β, no further
modification is necessary since we have attained (100).

From our previous analysis, we know that whenever α > β,
both sum2 and sum7 are strictly positive. Therefore, we can
find at least one pair of indices {m1,m2} ⊂ {1, · · · ,M}
such that x[m1]

63 > 0 and x
[m2]
95 > 0. In our modification, we

decrease x
[m1]
63 by ∆63; increase x

[m1]
18 by ∆18; decrease x

[m2]
95

by ∆95; increase x
[m2]
9 by ∆9; decrease x

[m]
0 by ∆

[m]
0 for all

m ∈ {1, · · · ,M}, respectively; and keep all other x[m]
b intact.

We choose the ∆ values as follows.
We choose two strictly positive but sufficiently small delta

terms ∆63 ≤ x
[m1]
63 and ∆95 ≤ x

[m2]
95 that satisfy the following

equality:

∆63 · (p[m1]
10 + p

[m1]
01 + p

[m1]
11)

= ∆95 · (p[m2]
10 + p

[m2]
01 + p

[m2]
11).

(108)

What do we mean by sufficiently small ∆63 and ∆95 will be
clear in the later discussion.

Then choose ∆18 = ∆63 and ∆9 = ∆95. After that, we
choose {∆[m]

0 : ∀m} that satisfy simultaneously the following
two conditions: (i) 0 ≤ ∆

[m]
0 ≤ x

[m]
0 ; and (ii) the following

(in)equalities hold

∆18 · (p[m1]
10 + p

[m1]
01 + p

[m1]
11)

=
M∑

m=1

∆
[m]
0 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
≤ α− β.

(109)

Note that while the choices of ∆63, ∆95, ∆18, and ∆9

are strictly positive, {∆[m]
0 : ∀m} do not need to be strictly

positive and some of them can be zero. Also, the above
choice of {∆[m]

0 : ∀m} is always feasible provided the
strictly positive term ∆18 is sufficiently small (recalling that
we choose sufficiently small ∆63 to begin with). The rea-
son is as follows. Firstly, we can always choose ∆

[m]
0 =

∆18·(p
[m1]
10 +p

[m1]
01 +p

[m1]
11)

α x
[m]
0 for all m ∈ {1, · · · ,M}. By the

definition of α in (101), such choices of {∆[m]
0 : ∀m} satisfy

the equality in (109). Secondly, observe that α > β in the case
we are considering. A sufficiently small ∆18 > 0 can thus
satisfy the inequality in (109).

We will now verify that with the above choices of the ∆

terms, the new modified {x[m]
b : ∀m} always satisfy (86)–

(89), (97), and α ≥ β. Specifically, (86) still holds due to
∆18 = ∆63. (87) still holds due to (109). (88) still holds due to
∆9 = ∆95, (108), ∆63 = ∆18, and (109). (89) still holds since
∆9 = ∆95. (97) holds since any potential increment is offset
by an identical decrement. More specifically, the increase of
x
[m1]
18 is offset by the decrease of x

[m1]
63 , and the increase of

x
[m2]
9 is offset by the decrease of x

[m2]
95 . Also, we still have

α ≥ β since β remains unchanged (we did not modify x
[m]
27)

and the decrease of α is
∑M

m=1 ∆
[m]
0 ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
,

which is upper bounded by α− β as specified in (109).

Note that whenever α > β, we have sum2 and sum7 being
strictly positive, which in turn implies that we can successfully
perform the above modification process. Therefore, we can
repeat this process until α = β. The modification of Step 4 is
now complete.

Step 5: After Step 4, only 7M out of the 9M variables
x
[m]
b can be non-zero (those with b ∈ {0, 9, 18, 27, 31, 63, 95})

and 2M of them are strictly 0 (those with b ∈ {1, 2}). The
9M variables satisfy (86)–(89), (97), and (100). Given such
9M variables x

[m]
b , we can extend them to 18M variables by

setting x
[m]
b = 0 for all b ∈ {3, 7, 11, 15, 19, 23, 47, 87, 127}.

We now claim that the final x[m]
b satisfy all the (in)equalities

(15) to (28) in Proposition 1.

The proof is by direct substitution. The time-sharing in-
equality (15) is a direct result of (97). With our final x[m]

b , the

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 24

y variables in (16) to (22) become

y1 =
M∑

m=1

 ∑
∀b∈{0,9,18,27,31,63}

x
[m]
b ·

(
p
[m]
10 + p

[m]
11

)
,

(110)

y2 =
M∑

m=1

 ∑
∀b∈{0,9,18,27,31,95}

x
[m]
b ·

(
p
[m]
01 + p

[m]
11

)
,

(111)

y3 = R1 +
M∑

m=1

 ∑
∀b∈{0,9}

x
[m]
b ·

(
p
[m]
10 + p

[m]
11

)
, (112)

y4 = R2 +

M∑
m=1

 ∑
∀b∈{0,18}

x
[m]
b ·

(
p
[m]
01 + p

[m]
11

)
, (113)

y5 =
M∑

m=1

 ∑
∀b∈{0,9,18,27}

x
[m]
b ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
,

(114)

y6 = R1 +
M∑

m=1

 ∑
∀b∈{0,9}

x
[m]
b ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
,

(115)

y7 = R2 +
M∑

m=1

 ∑
∀b∈{0,18}

x
[m]
b ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
.

(116)

By the above construction of the y variables, one can easily
verify that y3 ≤ y6 and y4 ≤ y7, which leads to (23). In the
following, we show that y3 = y1 and y4 = y2, which leads to
(28). We observe that by substituting the R1 term in (112) by
(86), we have

y3 =
M∑

m=1

 ∑
∀b∈{0,9,18,27,31,63}

x
[m]
b ·

(
p
[m]
10 + p

[m]
11

)
= y1,

where the last inequality follows from (110). Symmetrically,
we can verify that y4 = y2.

What remains to be verified is that (24) to (27) also hold. To
that end, we will show that y5 = y6 = y7 = R1 +R2, which
jointly with y3 = y1 and y4 = y2 imply (24) to (27). We first
show that y6 = R1 +R2. By (115) and (88), we quickly have
y6 = R1 + R2 (recalling that x[m]

1 = 0 by our construction).
Symmetrically, we can verify that y7 = R1 +R2 as well. By
(114) and (100) we have

y5 =
M∑

m=1

 ∑
∀b∈{0,18}

x
[m]
b ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)

+

M∑
m=1

 ∑
∀b∈{0,9}

x
[m]
b ·

(
p
[m]
10 + p

[m]
01 + p

[m]
11

)
= R1 +R2,

where the last equality follows from (87) and (88) and x
[m]
2 =

x
[m]
1 = 0 in our construction. From the above discussion, we

have proven that the {x[m]
b } in our construction satisfy all the

linear conditions of Proposition 1. The proof is thus complete.

We now present the following alternative statement of the
capacity region, which is a byproduct of the above proof of
Proposition 2.

Lemma 8: For any fixed GF(q), consider any cross-input
independent M -input 2-receiver broadcast PEC. A rate vec-
tor (R1, R2) is in the capacity region if and only if
there exist 7M non-negative variables x

[m]
b for all b ∈

{0, 9, 18, 27, 31, 63, 95}, m ∈ {1, · · · ,M}, and 7 non-
negative variables y1 to y7 such that jointly they satisfy

∀m ∈ {1, · · · ,M},
∑

∀b∈{0,9,18,27,31,63,95}

x
[m]
b ≤ 1,

eqs. (110) to (116), y1 = y3, y2 = y4, and y5 = y6 = y7 =
R1 +R2.

Proof: If (R1, R2) is in the capacity region, then the LP
problem in Lemma 2 is feasible. By the proof of Proposition 2,
we can compute a set of x

[m]
b and yi values following the 5-

step approach detailed in the proof of Proposition 2. And in
the end of that proof, we have already shown that the resulting
x
[m]
b and yi values satisfy the description of Lemma 8.
Conversely, if there exists a set of x

[m]
b and yi values

satisfying Lemma 8, then (R1, R2) is in the capacity region
since those x

[m]
b and yi values will also satisfy the LP problem

in Proposition 1. The proof is thus complete.
Lemma 4 can now be proven as follows. Consider any given

(R1, R2). If the LP problem in Proposition 1 is feasible, then
(R1, R2) must be in the capacity region. Therefore, there exist
7M x

[m]
b values and 7 yi values satisfying the conditions in

Lemma 8. By simple algebraic verification, those 7M x
[m]
b

values and 7 yi values also satisfy the conditions in Lemma 4.
The proof of Lemma 4 is thus complete.

APPENDIX C
PROOF OF LEMMA 5

Lemma 5 can be proven by interleaving several CH1-based
codes over the time axis and the M input symbols, and then
apply the interleaved super code to CH2.

Specifically, we consider M super time slots. Each super
time slot contains n time slots. If we use a CH1-based code
for each super time slot and the underlying channel is CH1,
then overall we can send M · nRi symbols from the source s
to destination di, i = 1, 2, within M · n time slots. For any
l ∈ {1, · · · , n} and h ∈ {0, · · · , (M − 1)}, we use “the l-th
(time) instant of the h-th original code” to refer to the M -
dimensional symbol vector W that is sent by the h-th code16

during the l-th time instant of the corresponding super time
slot.

Now we interleave the M original CH1-based codes in the
following way and apply the end results to CH2. That is,
for any time slot t = 1, · · · , (Mn + M − 1) and any m ∈
{1, · · · ,M}, we set the m-th input of the new interleaved code

16We label the M codes of interest as the 0-th code to the (M − 1)-th
code for simpler notation in the subsequent discussion.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 25

to 0 if
⌈
t−m+1

M

⌉
/∈ {1, · · · , n}. If

⌈
t−m+1

M

⌉
∈ {1, · · · , n}, we

set the m-th input of the new interleaved code to the m-th
input of the

⌈
t−m+1

M

⌉
-th instant of the ((t −m) mod M)-th

original code.
One can quickly see that interleaving breaks the cross-input

dependence. Therefore when applying the above interleaved
scheme to CH2, we can transmit MnR1 and MnR2 informa-
tion packets to d1 and d2, respectively, within (Mn+M − 1)
time slots. The effective rates become Mn

Mn+M−1 (R1, R2).
Using a sufficiently large n, the throughput loss (due to
interleaving) is negligible. The proof of Lemma 5 is thus
complete.

APPENDIX D
DERIVATION OF THE RANK CONVERSION EQUALITIES

Eq. (21) has been proven in Section V-C. The definitions in
this appendix follow the ones used in Section V-C.

Consider A1 = S1. By (29) we have Rank(A1(0)) = 0.
We then note that when s sends a ct ∈ TYPEb for some b
with b1 being 0, then that ct is not in A1 = S1. Therefore,
whenever d1 receives W (t) = X ·cTt successfully, the rank of
A1 will increase by one. We thus have

Rank(A1(0)) +
∑

∀b w. b1=0

(
n∑

t=1

1{ ct ∈ TYPEb, and
d1 receives it

}
)

= Rank(A1(n)). (117)

Taking the normalized expectation of (117), counting only the
FTs, and by the linearity of expectation and the stationarity
and memorylessness of the channel, we have proven that (16)
must hold for M = 1.

Consider A3 = S1⊕Ω1 and we have Rank(A3(0)) = nR1.
When s sends a ct ∈ TYPEb for some b with b3 being 0,
then that ct is not in A3 = S1 ⊕ Ω1. Therefore, whenever
d1 receives W (t) = X · cTt successfully, the rank of A3 will
increase by one. We thus have

Rank(A3(0)) +
∑

∀b w. b3=0

(
n∑

t=1

1{ ct ∈ TYPEb, and
d1 receives it

}
)

= Rank(A3(n)). (118)

Taking the normalized expectation of (118), we have proven
(18) for M = 1.

Consider A5 = S1 ⊕ S2 and we have Rank(A5(0)) = 0.
When s sends a ct ∈ TYPEb for some b with b5 being 0,
then that ct is not in A5 = S1⊕S2. Therefore, whenever one
of {d1, d2} receives W (t) = X · cTt successfully, the rank of
A5 will increase by one. We thus have

Rank(A5(0)) +
∑

∀b w. b5=0

(
n∑

t=1

1{ ct ∈ TYPEb, and
one of {d1, d2} receives it

}
)

= Rank(A5(n)). (119)

Taking the normalized expectation of (20), we have proven
(20) for M = 1.

Since (17), (19), and (22) are symmetric versions of (16),
(18), and (21), the proof of (16) to (22) for the case of M = 1
is complete.

APPENDIX E
PROOF OF LEMMA 7

We first prove Property 1 of Lemma 7. When we substitute
x⃗ by 0⃗ into the first three groups of conditions in Proposition 1,
it is clear that it satisfies Group 1, the time sharing condition;
y1 = y2 = y5 = 0, y3 = y6 = R1, and y4 = y7 = R2; and all
7 rank comparison conditions in Group 3 are satisfied. As a
result, 0⃗ is in Γ. By definition, the given 18-dimensional point
⃗̈x satisfies the conditions in Groups 1 to 3. As a result, ⃗̈x is
also in Γ. Property 1 is thus proven.

We now prove Property 2. Since (R1, R2) is in the interior
of the capacity region, we have R1 > 0 and R2 > 0. Also
since the 2-receiver broadcast PEC is not physically degraded
and since17 M = 1, we have p

[1]
01 > 0 and p

[1]
10 > 0. In the

following, we will construct step-by-step a point x⃗ that is in
the interior of Γ.

An interior point of Γ is a point such that all 8 inequalities
in (15) and (23)–(27) are satisfied with strict inequalities and
each of the 18 coordinates is strictly positive. We first consider
the all-zero point 0⃗ and set the variable values to x⃗ = 0⃗. Then
we have y1 = y2 = y5 = 0, y3 = y6 = R1, and y4 = y7 = R2.
(15) and (24) are thus satisfied with strict inequality while all
the other 5 rank-comparison inequalities (23) and (25)–(27)
are satisfied with equality.

Since x
[1]
0 participates in all 7 rank conversion equalities

(16) to (22), if we increase the value of x
[1]
0 (currently being

0) by a small constant δ0 > 0, then the values of y1 and y3 will
increase by δ0(p

[1]
10+p

[1]
11); the values of y2 and y4 will increase

by δ0(p
[1]
01 + p

[1]
11); and the values of y5 to y7 will increase by

δ0(p
[1]
10 + p

[1]
01 + p

[1]
11). One can quickly see that (25) and (26)

are still satisfied with equality; both conditions in (23) and the
condition in (27) are now satisfied with strict inequality; and
(15) and (24) may or may not be satisfied anymore. However,
since the starting point x⃗ = 0⃗ satisfies both (15) and (24)
with strict inequality, we can choose a sufficiently small δ0
such that (15) and (24) are still satisfied with strict inequality
after increasing the x

[1]
0 value by δ0. This new x⃗ will be used

as a new starting point for the subsequent construction.
Since x

[1]
3 participates in all 5 rank conversion inequalities

(16) to (20), if we increase the value of x
[1]
3 (currently being

0) by a small constant δ3 > 0, then the values of y1 and
y3 will increase by δ3(p

[1]
10 + p

[1]
11); the values of y2 and y4

will increase by δ3(p
[1]
01 + p

[1]
11); the value of y5 will increase

by δ3(p
[1]
10 + p

[1]
01 + p

[1]
11); and the values of y6 and y7 remain

unchanged. One can quickly see that the conditions of (24)
are still satisfied with strict inequality since y6 and y7 do
not change and the starting point satisfies (24) with strict
inequality; both (25) and (26) are now satisfied with strict
inequality; and the conditions in (15), (23), and (27) may or
may not be satisfied anymore. However, since the starting point
x⃗ satisfies (15), (23), and (27) with strict inequality, we can
choose a sufficiently small δ3 such that (15), (23), and (27)
are still satisfied with strict inequality after increasing its x

[1]
3

17Lemma 7 can be generalized for the case of M > 1, for which physically
degradedness implies

∑
m p

[m]
01 > 0 and

∑
m p

[m]
10 > 0.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 26

value by δ3. This new x⃗ will be used as the new starting point
for the subsequent construction.

Since x
[1]
7 participates in all 4 rank conversion inequalities

(16) to (19), if we increase the value of x[1]
7 (currently being 0)

by a small constant δ7 > 0, then the values of y1 and y3 will
increase by δ7(p

[1]
10+p

[1]
11); the values of y2 and y4 will increase

by δ7(p
[1]
01+p

[1]
11); and the values of y5 to y7 remain unchanged.

By similar reasonings as in the previous discussion, one can
quickly see that the conditions of (24) to (27) are now satisfied
with strict inequality; and the conditions in (15) and (23) may
or may not be satisfied anymore. However, since the starting
point x⃗ satisfies both (15) and (23) with strict inequality, we
can choose a sufficiently small δ7 such that (15) and (23)
are still satisfied with strict inequality after increasing its x

[1]
7

value by δ7. This new x⃗ satisfies the time-sharing inequality
(15) and all rank comparison inequalities (23) to (27) with
strict inequality.

The last step of the proof is to note that an interior point
must have strictly positive values for all 18 coordinates. Thus
far, only three coordinates x

[1]
0 , x

[1]
3 , and x

[1]
7 are strictly

positive. Following similar arguments as in the previous dis-
cussion, we can sequentially increase the value of x[1]

b for all
b ∈ FTs\{0, 3, 7} by a sufficiently small amount δb > 0
while still satisfying (15) and (23)–(27) with strict inequality.
The proof of Lemma 7 is thus complete.

APPENDIX F
DETAILED IMPLEMENTATION OF PHASES 1 AND 3 OF THE

TUNNELING APPROACH

There are multiple ways of completing the trajectory from
0 to x⃗start in Phase 1. For simplicity, we assume that x⃗start is
constructed in the same way as when we construct the interior
point in Appendix E.

Specifically, in Table I of Section V-E we have established
that whether type-0 is non-empty depends on whether both
A6 (Ω and A7 (Ω hold. Since the conditions in (24)
are satisfied with strict inequality when x⃗ = 0, we can
always choose a coding vector ct ∈ TYPE0 in the beginning
of transmission. Since the conditions in (24) are satisfied
with strict inequality even after increasing the value of x

[1]
0

by δ0 where δ0 is defined in Appendix E, with close-to-
one probability we can continuously choose coding vector
ct ∈ TYPE0 for n · δ0 number of time slots.

After choosing type-0 coding vectors, we consider type-3
coding vectors. In Table I of Section V-E, we have established
that whether type-3 is non-empty depends on whether all three
conditions A3 (A6, A4 (A7, and (41) hold with strict
inequality. Since the conditions in (23) and (27) are satisfied
with strict inequality before and after we increase the value
of x

[1]
3 by δ3 in Appendix E, with close-to-one probability

we can continuously choose coding vector ct ∈ TYPE3 for
n · δ3 number of time slots. After choosing type-3 coding
vectors, we consider type-7 coding vectors. In Table I of
Section V-E, we have established that whether type-7 is non-
empty depends on whether both A3 (A6 and A4 (A7 hold
simultaneously. Since the conditions in (23) are satisfied with
strict inequality before and after we increase the value of x[1]

7

by δ7 in Appendix E, with close-to-one probability we can
continuously choose coding vector ct ∈ TYPE7 for n · δ7
number of time slots.

After choosing type-7 coding vectors, we choose coding-
type b sequentially for all b ∈ FTs\{0, 3, 7}, respectively.
For each b, we will continuously choose coding vector ct ∈
TYPEb for n · δb number of time slots where the δb values
are discussed in Appendix E. Since during this process all
7 rank comparison inequalities (23)–(27) are satisfied with
strict inequality, by the same reason as in the previous steps,
continuously sending coding vector ct ∈ TYPEb for n · δb
number of time slots is feasible with close-to-one probability.
The above procedure completes Phase 1 of the tunneling
approach.

There are multiple ways of completing the trajectory from
x⃗end to ⃗̈x in Phase 3. For simplicity, we quantify the penalty
of not performing Phase 3 and show that the penalty can be
made negligible. We first use the x⃗end value in (45) to compute
the corresponding y1 to y7 values using (16)–(22), and denote
the computed values by yi,end, i = 1, · · · , 7. By (45) and by
the fact that ⃗̈x satisfies (28), we must have

y1,end + ϵ′ > y3,end and y2,end + ϵ′ > y4,end (120)

for some small ϵ′ > 0, which satisfies ϵ′ → 0 when
the ϵ in (45) approaches 0. Given the ϵ value used by
the tunneling approach to compute x⃗end, we can compute
the corresponding ϵ′. Then we perform the encoding steps
proposed in Phases 1 and 2. After finishing Phase 2, the
empirical frequency {X [1]

b (t) : ∀b} equals to x⃗end. By (120),
we must have Rank(Si) + nϵ′ > Rank(Si ⊕ Ωi) in the end
of Phase 2.

By Lemma 6, it is equivalent to Rank(Si∩Ωi) > n(Ri−ϵ′)
for all i ∈ {1, 2}. That is, in the end of Phase 2, destination di
can obtain n(Ri − ϵ′) independent linear combinations of the
message symbols Xi,1 to Xi,nRi . Namely, each di knows a
large percentage of the independent linear combinations of its
desired symbols Xi. However, each di needs to know all nRi

independent linear combinations before decoding. As a result,
source s simply needs to send the missing linear combinations
to each di, respectively. We observe that even when not
performing any inter-flow coding, the duration of sending the
missing linear combinations is O(ϵ′n). As a result, the penalty
of not performing any inter-flow coding in Phase 3 is at most
O(ϵ′) from the long-term average throughput perspective.

APPENDIX G
DETAILED DERIVATION OF TABLE I

Before proving the statements in Table I we first introduce
the following lemma

Lemma 9: Consider any three linear subspaces A, B, and
C in the global space Ω. If B ⊇ C, then (A ∩ B) ⊕ C =
(A⊕ C) ∩B.

Proof: By simple set operations, we quickly have (A ∩
B)⊕ C ⊆ (A⊕ C) ∩ (B ⊕ C) = (A⊕ C) ∩B.

As a result, we only need to prove that any vector v ∈
(A ⊕ C) ∩ B must also be in (A ∩ B) ⊕ C. Consider any

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 27

v ∈ (A⊕ C) ∩B. By definition, we can write

v = vA + vC = vB

for some vA ∈ A, vB ∈ B, and vC ∈ C. As a result, vA =
vB − vC must also belong to B since C ⊆ B. As a result,
vA ∈ A ∩ B. Since v = vA + vC , we must have v ∈ (A ∩
B)⊕ C. The proof is complete.

In the following, we consider all 18 different b ∈ FTs one
by one.
• Case 1: b = 0. By definition, we have

TYPE0 = TYPE0000000

∆
= Ω\(A1 ∪A2 ∪ · · · ∪A7)

= Ω\((S1 ⊕ S2 ⊕ Ω1) ∪ (S1 ⊕ S2 ⊕ Ω2)).

Since q ≥ 2, the statement TYPE0 ̸= ∅ is equivalent to

Rank(Ω)− Rank(S1 ⊕ S2 ⊕ Ω1) > 0

and Rank(Ω)− Rank(S1 ⊕ S2 ⊕ Ω2) > 0.

Also see our discussion of b = 23 in Section V-E (around
eqs. (46) to (50)). The above conditions are equivalent to A6 (
Ω and A7 (Ω, respectively. The entry for b = 0 in Table I
is thus proven.
• Case 2: b = 1. By definition, we have

TYPE1 = TYPE0000001

∆
= A7\(A1 ∪A2 ∪ · · · ∪A6)

= (S1 ⊕ S2 ⊕ Ω2)\((S2 ⊕ Ω2) ∪ (S1 ⊕ S2 ⊕ Ω1)).

Since q ≥ 2, the statement TYPE1 ̸= ∅ is equivalent to

Rank(S1 ⊕ S2 ⊕ Ω2)

− Rank((S2 ⊕ Ω2) ∩ (S1 ⊕ S2 ⊕ Ω2))

= Rank(S1 ⊕ S2 ⊕ Ω2)− Rank(S2 ⊕ Ω2) (121)
= Rank(A7)− Rank(A4) > 0

and

Rank(S1 ⊕ S2 ⊕ Ω2)

− Rank((S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))

= Rank(Ω)− Rank(S1 ⊕ S2 ⊕ Ω1) (122)
= Rank(Ω)− Rank(A6) > 0

where (121) follows from (A4∩A7) = A4; and (122) follows
from Lemma 6. The above conditions are equivalent to A4 (
A7 and A6 (Ω, respectively. The entry for b = 1 in Table I
is thus proven.
• Case 3: b = 2. This is a symmetric case of b = 1.
• Case 4: b = 3. By definition, we have

TYPE3 = TYPE0000011

∆
= (A6 ∩A7)\(A1 ∪A2 ∪ · · · ∪A5)

= ((S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))\
((S1 ⊕ Ω1) ∪ (S2 ⊕ Ω2) ∪ (S1 ⊕ S2)).

We notice that the expression of TYPE3 has the form of
B1\(B2 ∪ B3 ∪ B4) where B1 to B4 are linear subspaces.
If we define B′

i = B1 ∩ Bi where i = 2 to 4, we can

see that TYPE3 can be expressed as B1\(B′
2 ∪ B′

3 ∪ B′
4)

where B1 and B′
2 to B′

4 are linear subspaces. Note that
the size of B1 is qRank(B1). By the union bound and by
the observation that each linear subspace always contains
the 0 vector, the size of (B′

2 ∪ B′
3 ∪ B′

4) is no larger than
qRank(B′

2) + qRank(B′
3) + qRank(B′

4) − 2.
As a result, assuming q ≥ 3 the statement TYPE3 ̸= ∅

holds if and only if Rank(B1) > Rank(B′
i) for i = 2 to 4.

Plug in the expressions of B1 and B′
2 to B′

4, the statement
TYPE3 ̸= ∅ holds if and only if the following inequality are
true.

Rank((S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))

− Rank((S1 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))
(123)

= (Rank(A6) + Rank(A7)− Rank(Ω))

− (Rank(A3) + Rank(A7)− Rank(Ω)) (124)
= Rank(A6)− Rank(A3) > 0,

Rank((S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))

− Rank((S2 ⊕ Ω2) ∩ (S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))

= Rank(A7)− Rank(A4) > 0, (125)

and

Rank((S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))−
Rank((S1 ⊕ S2) ∩ (S1 ⊕ S2 ⊕ Ω1) ∩ (S1 ⊕ S2 ⊕ Ω2))

= (Rank(A6) + Rank(A7)− Rank(Ω))− Rank(A5) > 0,
(126)

where (124) follows from (A3 ∩ A6 ∩ A7) = (A3 ∩ A7) and
from Lemma 6; (125) is symmetric to (123); and (126) follows
from (A5 ∩ A6 ∩ A7) = A5 and from Lemma 6. The above
conditions are equivalent to A3 (A6, A4 (A7, and strict
(41), respectively. The entry for b = 3 in Table I is thus
proven.
• Case 5: b = 7. By definition, we have

TYPE7 = TYPE0000111

∆
= (A5 ∩A6 ∩A7)\(A1 ∪A2 ∪A3 ∪A4)

= (S1 ⊕ S2)\((S1 ⊕ Ω1) ∪ (S2 ⊕ Ω2)).

Since q ≥ 2, the statement TYPE7 ̸= ∅ is equivalent to

Rank(A5)− Rank(A3 ∩A5)

= Rank(A5)− (Rank(A3) + Rank(A5)− Rank(A6))
(127)

= Rank(A6)− Rank(A3) > 0,

and

Rank(A5)− Rank(A4 ∩A5)

= Rank(A5)− (Rank(A4) + Rank(A5)− Rank(A7))
(128)

= Rank(A7)− Rank(A4) > 0,

where (127) and (128) follow from Lemma 6. The above
conditions are equivalent to A3 (A6 and A4 (A7,
respectively. The entry for b = 7 in Table I is thus proven.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 28

• Case 6: b = 9. By definition, we have

TYPE9 = TYPE0001001

∆
= (A4 ∩A7)\(A1 ∪A2 ∪A3 ∪A5 ∪A6)

= A4\A6.

Since q ≥ 2, the statement TYPE9 ̸= ∅ is equivalent to

Rank(A4)− Rank(A4 ∩A6)

= Rank(A4)− (Rank(A4) + Rank(A6)− Rank(Ω))
(129)

= Rank(Ω)− Rank(A6) > 0,

where (129) follows from Lemma 6. The above condition is
equivalent to A6 (Ω. The entry for b = 9 in Table I is thus
proven.
• Case 7: b = 11. By definition, we have

TYPE11 = TYPE0001011

∆
= (A4 ∩A6 ∩A7)\(A1 ∪A2 ∪A3 ∪A5)

= (A4 ∩A6)\(A3 ∪A5).

Since q ≥ 2, the statement TYPE11 ̸= ∅ is equivalent to

Rank(A4 ∩A6)− Rank(A3 ∩A4 ∩A6)

= Rank(A4 ∩A6)− Rank(A3 ∩A4)

= (Rank(A4) + Rank(A6)− Rank(Ω))−
(Rank(A3) + Rank(A4)− Rank(Ω)) (130)

= Rank(A6)− Rank(A3) > 0,

and

Rank(A4 ∩A6)− Rank(A5 ∩A4 ∩A6)

= Rank(A4 ∩A6)− Rank(A5 ∩A4)

= (Rank(A4) + Rank(A6)− Rank(Ω))−
(Rank(A5) + Rank(A4)− Rank(A7)) (131)

= Rank(A6) + Rank(A7)− Rank(A5)− Rank(Ω) > 0,

where (130) and (131) follow from Lemma 6. The above con-
ditions are equivalent to A3 (A6 and strict (41), respectively.
The entry for b = 11 in Table I is thus proven.
• Case 8: b = 15. By definition, we have

TYPE15 = TYPE0001111

∆
= (A4 ∩A5 ∩A6 ∩A7)\(A1 ∪A2 ∪A3)

= (A4 ∩A5)\(A2 ∪A3).

Since q ≥ 2, the statement TYPE15 ̸= ∅ is equivalent to

Rank(A4 ∩A5)− Rank(A2 ∩A4 ∩A5)

= Rank(A4 ∩A5)− Rank(A2)

= (Rank(A4) + Rank(A5)− Rank(A7))− Rank(A2) > 0,
(132)

and

Rank(A4 ∩A5)− Rank(A3 ∩A4 ∩A5) (133)
= Rank(A3 ⊕ (A4 ∩A5))− Rank(A3) (134)
= Rank(Ω1 ⊕ (S1 ⊕ ((S2 ⊕ Ω2) ∩ (S1 ⊕ S2))))

− Rank(A3)

= Rank(Ω1 ⊕ ((S1 ⊕ S2 ⊕ Ω2) ∩ (S1 ⊕ S2)))

− Rank(A3) (135)
= Rank(Ω1 ⊕ S1 ⊕ S2)− Rank(A3) > 0, (136)

where (132) and (134) follow from Lemma 6; and (135)
follows from Lemma 9. The above conditions are equivalent
to strict (40) and A3 (A6, respectively. The entry for b = 15
in Table I is thus proven.
• Case 9: b = 18. This is a symmetric case of b = 9.
• Case 10: b = 19. This is a symmetric case of b = 11.
• Case 11: b = 23. This is a symmetric case of b = 15.
• Case 12: b = 27. By definition, we have

TYPE27 = TYPE0011011

∆
= (A3 ∩A4 ∩A6 ∩A7)\(A1 ∪A2 ∪A5)

= (A3 ∩A4)\A5.

Since q ≥ 2, the statement TYPE27 ̸= ∅ is equivalent to

Rank(A3 ∩A4)− Rank(A3 ∩A4 ∩A5)

= Rank(A3 ∩A4)

− (Rank(A4 ∩A5) + Rank(A3)− Rank(A6)) (137)
= (Rank(A3) + Rank(A4)− Rank(Ω))

− ((Rank(A4) + Rank(A5)− Rank(A7))

+ Rank(A3)− Rank(A6)) (138)
= Rank(A6) + Rank(A7)− Rank(Ω)− Rank(A5) > 0

where (137) follows from the equivalence between (133) and
(136); and (138) follows from Lemma 6. The above condition
is equivalent to strict (41). The entry for b = 27 in Table I is
thus proven.
• Case 13: b = 31. By definition, we have

TYPE31 = TYPE0011111

∆
= (A3 ∩ · · · ∩A7)\(A1 ∪A2)

= (A3 ∩A4 ∩A5)\(A1 ∪A2).

Since q ≥ 2, the statement TYPE31 ̸= ∅ is equivalent to

Rank(A3 ∩A4 ∩A5)− Rank(A1 ∩A3 ∩A4 ∩A5) (139)
= Rank(A3 ∩A4 ∩A5)− Rank(A1 ∩A4)

= (Rank(A3) + Rank(A4) + Rank(A5)

− Rank(A6)− Rank(A7))

− (Rank(A1) + Rank(A4)− Rank(A7)) (140)
= Rank(A3) + Rank(A5)− Rank(A6)− Rank(A1) > 0,

and

Rank(A3 ∩A4 ∩A5)− Rank(A2 ∩A3 ∩A4 ∩A5)

= Rank(A4) + Rank(A5)− Rank(A7)− Rank(A2) > 0,
(141)

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 29

where the first term of (140) follows from the same arguments
as used in (137) and (138) that quantify Rank(A3∩A4∩A5);
the second term of (140) follows from Lemma 6; and (141)
is a symmetric version of (139). The above conditions are
equivalent to strict (39) and strict (40), respectively. The entry
for b = 31 in Table I is thus proven.
• Case 14: b = 47. By definition, we have

TYPE47 = TYPE0101111

∆
= (A2 ∩A4 ∩A5 ∩A6 ∩A7)\(A1 ∪A3)

= A2\A3.

Since q ≥ 2, the statement TYPE47 ̸= ∅ is equivalent to

Rank(A2)− Rank(A3 ∩A2)

= Rank(A3 ⊕A2)− Rank(A3) (142)
= Rank(A6)− Rank(A3) > 0,

where (142) follows from Lemma 6. The above condition is
equivalent to A3 (A6. The entry for b = 47 in Table I is
thus proven.
• Case 15: b = 63. By definition, we have

TYPE63 = TYPE0111111

∆
= (A2 ∩ · · · ∩A7)\A1

= (A2 ∩A3)\A1.

Since q ≥ 2, the statement TYPE63 ̸= ∅ is equivalent to

Rank(A2 ∩A3)− Rank(A1 ∩A2 ∩A3)

= Rank(A2 ∩A3)− Rank(A1 ∩A2)

= (Rank(A2) + Rank(A3)− Rank(A6))

− (Rank(A1) + Rank(A2)− Rank(A5)) (143)
= Rank(A3) + Rank(A5)− Rank(A6)− Rank(A1) > 0,

where (143) follows from Lemma 6. The above condition is
equivalent to strict (39). The entry for b = 63 in Table I is
thus proven.
• Case 16: b = 87. This is a symmetric case of b = 47.
• Case 17: b = 95. This is a symmetric case of b = 63.
• Case 18: b = 127. By definition, we have

TYPE127 = TYPE1111111

∆
= (A1 ∩ · · · ∩A7) = A1 ∩A2.

Since A1 and A2 are linear subspaces, so is (A1 ∩A2). Since
any linear subspace always contains the 0 vector, TYPE127 ̸=
∅ is always true. The entry for b = 127 in Table I is thus
proven.

APPENDIX H
A LEMMA FOR THE ACHIEVABILITY PROOF FOR THE

CASE OF ARBITRARY M

Lemma 10: Consider any set H ⊆ {1, 2, 3, · · · , 7} and any
m ∈ {1, · · · ,M}. Define term

∆
= Rank

(∩
h∈H Ah

)
where

the linear subspaces Ah, h ∈ H, are evaluated in the beginning
of time t (or equivalently the end of the split time instant
(t−1).M). Also define term† ∆

= Rank
(∩

h∈H A†
h

)
where the

linear subspaces A†
h, h ∈ H, are evaluated in the beginning

of the split time instant t.m. Then we must have

0 ≤ term† − term ≤ |H| · (m− 1).

Proof: To prove 0 ≤ (term† − term), we prove the
following stronger statement instead.(∩

h∈H

Ah

)
⊆

(∩
h∈H

A†
h

)
. (144)

Consider first the case of |H| = 1, i.e., H = {h} for some
h ∈ {1, · · · , 7}. We first note that the knowledge spaces S1

and S2 enlarge monotonically over time. Therefore, the linear
subspace Ah, being a sum space of monotonically growing Si,
i = 1, 2, and constant linear spaces Ωj , j = 1, 2, also enlarges
monotonically. As a result, Ah ⊆ A†

h and (144) is proven for
the case of |H| = 1. Since any intersection of monotonically
growing linear subspaces is also monotonically growing, (144)
is proven for the case of arbitrary H as well.

To prove (term† − term) ≤ |H| · (m − 1), we again first
consider the simplest case of |H| = 1. For any h ∈ {1, · · · , 7},
we would like to prove that Rank(A†

h)−Rank(Ah) ≤ (m−1).
Consider the case of A6 = (S1 ⊕ S2 ⊕ Ω1) for example. Let
S1 and S2 denote the knowledge spaces of d1 and d2 in the
beginning of time t. Let ct,1 to ct,m−1 denote the coding
vector of the first (m− 1) inputs transmitted before the split
time instant t.m. As a result,

A†
6 =(S1 ⊕ span{those ct,1 to ct,m−1 rec’d by d1})
⊕ (S2 ⊕ span{those ct,1 to ct,m−1 rec’d by d2})
⊕ Ω1

=A6 ⊕ span{those ct,1 to ct,m−1 rec’d by d1 or d2}.

As a result, Rank(A†
6) − Rank(A6) ≤ (m − 1). The same

approach can be used to prove for the cases of A1 to A7. We
have thus proven term†−term ≤ |H|·(m−1) for the simplest
case of |H| = 1.

When proving the case of general H, we note that for any
linear subspaces A ⊆ B and C ⊆ D, by Lemma 6 we have

Rank(B ∩D)− Rank(A ∩ C)

= Rank(B) + Rank(D)− Rank(B ⊕D)

− (Rank(A) + Rank(C)− Rank(A⊕ C))

≤ (Rank(B)− Rank(A)) + (Rank(D)− Rank(C))
(145)

where (145) follows from the fact that (B⊕D) ⊇ (A⊕C). By
choosing A =

∩
h∈H1

Ah; B =
∩

h∈H1
A†

h; C =
∩

h∈H2
Ah;

and D =
∩

h∈H2
A†

h with H1∪H2 = H and H1∩H2 = ∅, we
can thus prove by induction that (term†−term) ≤ |H|·(m−1)
for general H (with the help of (144) implicitly). The proof
of this lemma is complete.

REFERENCES

[1] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. 41st
Annual Allerton Conf. on Comm., Contr., and Computing. Monticello,
IL, October 2003.

[2] T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2524–2530, Oct. 1998.

IEEE TRANSACTIONS ON INFORMATION THEORY, ONLINE PREPRINT 2014 30

[3] A. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity
of wireless erasure networks,” IEEE Trans. Inf. Theory, vol. 52, no. 3,
pp. 789–804, March 2006.

[4] A. Dana and B. Hassibi, “The capacity region of multiple input erasure
broadcast channels,” in Proc. IEEE Int’l Symp. Inform. Theory. Ade-
laide, Australia, September 2005.

[5] A. El Gamal, “The feedback capacity of degraded broadcast channels,”
IEEE Trans. Inf. Theory, vol. 25, no. 2, pp. 379–381, March 1978.

[6] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Multiuser broadcast
erasure channel with feedback — capacity and algorithms,” in Proc.
NetCoop, 2010.

[7] L. Georgiadis and L. Tassiulas, “Broadcast erasure channel with feed-
back — capacity and algorithms,” in Proc. 5th Workshop on Network
Coding, Theory, & Applications (NetCod). Lausanne, Switzerland, June
2009, pp. 54–61.

[8] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, October 2006.

[9] D. Koutsonikolas, C.-C. Wang, Y. Hu, and N. Shroff, “FEC-based
AP downlink transmission schemes for multiple flows: Combining the
reliability and throughput enhancement of intra- and inter-flow coding,”
Elsevier Performance Evaluation (PEVA), vol. 68, no. 11, November
2011.

[10] P. Larsson and N. Johansson, “Multi-user ARQ,” in Proc. IEEE Vehic-
ular Technology Conference, 2006.

[11] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Trans.
Inf. Theory, vol. 49, no. 2, pp. 371–381, February 2003.

[12] X. Li, C.-C. Wang, and X. Lin, “Optimal immediately-decodable inter-
session network coding (IDNC) schemes for two unicast sessions with
hard deadline constraints,” in Proc. 49th Annual Allerton Conf. on
Comm., Contr., and Computing. Monticello, Illinois, USA, September
2011, pp. 784–791.

[13] L. Ozarow and S. Leung-Yan-Cheong, “An achievable region and outer
bound for the Gaussian broadcast channel with feedback,” IEEE Trans.
Inf. Theory, vol. 30, no. 4, July 1984.

[14] H. Sato, “An outer bound to the capacity region of broadcast channels,”
IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 374–377, May 1978.

[15] C.-C. Wang, “Capacity of 1-to-K broadcast packet erasure channels with
channel output feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp.
957–988, February 2012.

